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Correspondence 

Weighted Least-Squares Design and 
Characterization of Complex FIR Filters 

Amin G .  Jaffer and William E. Jones 

Abstract- This correspondence presents two novel weighted least- 
squares methods for the design of complex coefficient finite impulse 
response (FIR) filters to attain specified arbitrary multiband magnitude 
and linear or arbitrary phase responses. These methods are computation- 
ally efficient, requiring only the solution of a Toeplitz system of N linear 
equations for an N-length filter that can be obtained in o( N 2 )  operations. 
Illustrative filter design examples are presented. 

I. INTRODUCTION 

The subject of real FIR filter design using both the weighted 
least-squares error (WLS) and Chebyshev criteria has been addressed 
extensively in the past [1]-[4]. More recently, the design of complex 
FIR filters that satisfy specified asymmetric amplitude or phase 
responses necessary in radar/sonar clutter suppression problems and 
other applications has been considered [SI-[9]. Nguyen [7] and Pei 
and Shyu [8] have employed the eigenfilter technique to approxi- 
mately optimize the complex FIR filter WLS error design criterion. 
The eigenfilter technique, in addition to being only approximately 
optimal, requires the computation of a principal eigenvector by 
an iterative technique, where the number of iterations required for 
convergence can be quite large, resulting in heavy computational 
demands. 

Two complex FIR filter WLS synthesis techniques-one for ar- 
bitrary phase response (unconstrained method) and the other in- 
corporating the linear phase constraint (constrained m e t h o d t a r e  
developed here. The direct WLS optimization methods presented here 
utilize the complex gradient operator [lo], which avoids decomposing 
the complex variables into real and imaginary parts. The linear- 
phase constrained method is developed using the complex Lagrange 
multiplier constraint, which is valid for either odd or even length 
filters. The filter coefficient vector is obtained very efficiently for 
both techniques as the solution of the resulting Hermitian-Toeplitz 
system of linear equations using a noniterative method (Levinson 
algorithm) [l 11. Additionally, for a special but useful class of filters, 
our techniques result in a solution that altogether avoids the need for 
matrix inversion or the solution of a system of linear equations, thus 
reducing the computational demands significantly. The relationship 
between the constrained and unconstrained techniques is also exam- 
ined. Finally, two illustrative filter design examples are presented 
with direct comparison of example two with the eigenfilter design 
example of Nguyen [7]. 

11. WEIGHTED LEAST-SQUARES COMPLEX FIR FILTER DESIGN 

We derive here weighted least-squares algorithms for designing 
complex FIR filters to approximate arbitrary magnitude response 
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constrained to have affine (generalized linear) phase as well as FIR 
filters with arbitrarily specified magnitude and phase responses. The 
conditions for complex FIR filters to posses affine phase are known 
in the literature and are also explicitly derived in [9]. Although the 
affine phase conditions are slightly more general, it suffices for our 
purposes to incorporate only the conjugate-symmetric constraints on 
the filter coefficients that generate linear phase as other filters of this 
class can be readily obtained from this form. 

A. Constrained Weighted Least-Squares Technique 
The conjugate-symmetric constraints are given by h ( 1 1  ) = h * (S - 

1 - n ) ,  n = 0.. . . , I\- - 1, where h = [h(O).  hzipyy. . . . . h (3- l)]' 
represents the complex FIR filter coefficient vector.' We seek to 
obtain the coefficient vector h that minimizes the weighted integral 
squared-error criterion over the normalized frequency interval [0, 1)  

J (h )  = Ul( f ) l .D( f )  - dH(f)hl'df (1) I '  
subject to the above conjugate-symmetric constraints. Here, U!( f )  is 
a nonnegative frequency weighting function, :U( f )  is the desired 
complex frequency response, d(  f ) is the frequency "steering" vector 

dH (f )b represents the filter frequency response, and f represents 
the actual frequency normalized by the sampling frequency. The 
objective function given by (1) can accommodate arbitrary desired 
multiband magnitude responses including zero weighted frequency 
intervals. 

The conjugate-symmetric constraints can be compactly represented 
by h* = Eh, where E is the A: x N exchange matrix with ones on 
the cross diagonal and zeros elsewhere. Note that E = E",  and 
E 2  = I ,  where I is the identity matrix. Incorporation of this vector 
constraint via the complex Lagrange vector formulation yields the 
augmented objective function 

given by d ( f )  = [I, e I 2 " f . .  . . . e J 2 a ( N - 1 ) f  ] , the inner product 

(2) H 
J1 (h) = J ( h )  - X7 [h' - Eh] - 1 [b - Eh*].  

Note that J(h) and Jl@) are both real-valued functions for any 
complex vector h. Expanding J ( h ) ,  differentiating with respect to 
according to [lo] (which treats a complex variable and its conjugate 
as independent variables) and equating to the null vector to satisfy 
the condition for the unique minimum yields 

Let 

( 5 )  

Note that Q is a Hermitian-Toeplitz matrix that is fully defined by 
either its first row or column. Use of (4) and ( 5 )  in (3) yields 

Q ~ - E = X -  EX*. (6)  

'The superscripts *, T ,  and H represent conjugate, transpose, and 
conjugate-transpose operations, respectively. 
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Fig 1 Asymmetnc  notch filter design example (a) Filter magnitude response, (b) relat~ve error in magnitude response 

Let - = X- EX'. Then 

Qh = g + - ?. (7) 

= E h  is satisfied. 

E Q , = E & + E y = E c - ? * .  - - (8) 

In addition, since Q is Hermitian-persymmetric, EQ = Q*E [ l l ] ,  
and hence 

We next determine -, so that the constraint 
From (6) and (7), we have that 

Q*EL= E g - ; ' .  - (9) 

Subtracting (9) from the conjugate of (7) results in 

Q*(h* - Eh] = 27' - + g* - Eg. 

7 = -[E&' - lL] 

(10) 

Applying the constraint = E h  to (10) results in 
1 

- 2  
and the solution for the filter coefficient vector as 

(11) 
1 1 -1 

2 -  2 
Qh= - [ u + E g * ]  o r b =  -Q [g+Eg*] .  

B. Unconstrained Weighted Least-Squares Technique 
We derive here the unconstrained weighted least-squares com- 

plex FIR filter suitable for satisfying arbitrarily specified magnitude 
and phase responses (including nonlinear phase responses) that are 
necessary in many system applications. The solution immediately 
follows from the derivation in Section 11-A by deleting the Lagrange 
multiplier constraints in (2) ,  which results In 7 = 11 in (7), yielding 
the solution for the filter coefficient vector as- 

(12) 4 h  = II or h = 4-'U - 

where Q and (I are defined as before in (4) and (5). 

C. Remarks 
1) It can be readily verified that the constrained weighted least 

squares solution given by (1 1) does indeed satisfy the constraint 
- h' = Eh,  producing linear phase response, regardless of the 
desired complex response zu (f ). The unconstrained solution 
given by (12) of course does not satisfy this property in general. 
However, it of interest to note that if the desired response is 

z n ( f )  = n ~ ( f ) e J O D ( j ) ,  where n u ( f )  is the desired magni- 
tude response and ou ( f ) is linear phase with delay T = (S  - 
1) /2 ,  then the two solutions become one and the same. This 
can be seen by substituting zo(f) = n u ( f ) r  in 
the expression for g in (5) and simplifying, resulting in the nth 
element of g being given by 

- , 2?Tf ( . \ - l ) / 2  . 

It can also be shown that the nth element of Ex' is given by 
the same expression, whereupon Eg* = and (11) becomes 
- h = Q-'g, which is the same as (12). 

2) Since the matrix 4 is Hermitian-Toeplitz and, hence, fully 
defined by either its first row or column, the solution for the 
filter coefficient vector can be obtained quickly and accurately 
in o( ) operations by the Levinson recursion algorithm [ 1 I ]  
as opposed to general matrix inversion methods, which require 
o( S' ) operations. Furthermore, our methods obtain the true 
WLS solution, whereas the eigenfilter method [5], [7] obtains 
an approximate WLS solution that requires a variable number 
of iterations to compute the principal eigenvector (depending on 
the eigenvalue spread) and that necessitates o( .V2) operations 
per iteration. Note also that as a special but useful case, the Q 
matrix in this correspondence reduces to a scalar multiple of the 
identity matrix when the weighting function is uniform and the 
desired amplitude response encompasses the entire frequency 
interval without unspecified frequency bands, allowing the 
solution of the coefficient vector to be obtained trivially. 

3) Since the constrained technique results in a conjugate- 
symmetric filter, it would ostensibly appear computationally 
attractive to obtain the solution directly in terms of half the 
coefficient vector for even length filters. However, the resulting 
solution is actually more demanding computationally than the 
one presented here due to the more complicated and non- 
Toeplitz structure of the associated matrix of the system of 
linear equations (see also [12]). 

111. ILLUSTRATIVE FILTER DESIGN EXAMPLES 
In this section, we examine two filter design examples that illustrate 

the use of the constrained and unconstrained WLS techniques pre- 
sented here. A linear-phase asymmetric ?>-notch filter design example 
suitable for radar/sonar clutter suppression applications is used to 
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Fig. 2. Arbitrary transfer function example of Nguyen [7] using the unconstrained WLS method of this correspondence: (a) Magnitude response; (b) 
error in magnitude response; (c) group delay; (d) error in group delay. 

illustrate the use of the constrained technique, whereas a direct 
comparison with the results of Nguyen [7] for his arbitrary transfer 
function filter design example is used to illustrate the use of the 
unconstrained technique. 

The techniques developed here necessitate the evaluation of certain 
integrals for the computation of Q and 3 given by (4) and (5). In 
general, these integrals would require numerical integration; how- 
ever, for an important subclass of practical filter design problems 
(including all of the examples presented here), these integrals are 
readily evaluated in closed form. In particular, integrals arising 
from filter design problems specified by multisegment piecewise 
linear and exponential amplitude (linear in log-amplitude) response 
specifications with uniform or inverse squared-error weighting can be 
evaluated in closed form, resulting in improved numerical efficiency 
and accuracy. 

The Linear Phase Asymmetric V-Notch Filter Design Problem: 
The linear phase asymmetric v-notch filter design example is specified 
by the desired amplitude response function 

O d B ,  0 5 f 4 0 . 5  
[0, -401 dB, 0.5 5 f 4 0.7 
[-40,0] dB, 0.7 5 f 4 0.8 

0 dB, 0.8 5 f 4 1.0 

where the quantities in brackets specify the amplitudes at the end- 
points of the exponential curve segment (linear in log-amplitude) that 
specifies the desired amplitude response in the frequency interval 
specified. The exponential amplitude response function is given by 

for the lcth frequency interval [Fk l ,  F k z )  of the filter design speci- 
fication. As the asymmetric 21-notch filter has a 40-dB variation in 
its amplitude response, a minimum relative squared error estimation 
criterion is employed to balance the filter fit error amongst the 
specified frequency intervals evenly, resulting in the specification of 
the weighting function as 

A full derivation of the Q matrix and 3 vector for the relative 
squared error weighting and the linear and exponential amplitude 
response models is given in [9].  As this filter's amplitude response 
is asymmetric about any point in the normalized frequency domain 
(0 to 1 Hz.), it can only be generated with a complex FIR filter 
design technique; there is no purely real representation for these 
filter coefficients. 
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The amplitude response obtained by use of the constrained al- 
gorithm for the 101-tap complex linear phase FIR filter is given 
in Fig. l(a), and the relative squared error, which is expressed in 
decibels, is given in Fig. l(b). The constrained algorithm achieves a 
peak relative error of 0.41 dB at the frequency interval edges and 
a root-mean-square (RMS) error of 0.004759. The use of a relative 
squared-error minimization criterion is evident in the evenness of the 
error ripples across the large range of the filter’s amplitude response 
Fig. l(a). 

The Arbitruty Filter Transfer Function Design Example of Nguyrn 
[i]: Example 5,  taken from Nguyen [7], is used to compare the 
unconstrained WLS technique presented here with the eigenfilter 
method of [7]. Nguyen’s example consists of a specification with 
four passbands and one stopband with specified amplitude and phase 
requirements that, due to its asymmetry, necessitates a complex FIR 
filter synthesis technique. The unspecified frequency intervals are 
unweighted and do not contribute to the total fit error. Nguyen’s 
example is specified with an absolute squared-error optimization cri- 
tenon rather than the relative squared-error criterion used previously. 
The amplitude response attained by the unconstrained WLS technique 
for a 50-tap FIR filter is given in Fig. 2(a), the amplitude error in 
Fig. 2(b), the group delay in Fig. 2(c), and the group delay error 
in Fig. 2(d). The corresponding Rh4S errors are also shown in the 
figures. While the results obtained here are nearly identical to those 
of Nguyen, they represent the true WLS solution, which is also 
computed much more efficiently than the eigenfilter technique of 171 

also Remark 2). 
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Constraints on the Cutoff Frequencies 
of Mth-Band Linear-Phase FIR Filters 

James M. Nohrden and Truong Q. Nguyen 

Abstract-In this correspondence, constraints are derived for the cut- 
off frequencies of linear-phase FIR -11th-band filters such that the filters 
have good passband and stopband characteristics, i.e. ones that very 
closely approximate an ordinary (non Mth-band) filter designed using 
some optimal method. Constraints on lowpass filters are first considered, 
and the results are extended to multiband filters. 

I. INTRODUCTION 

Mth-band filters have found numerous applications in recent 
years [2]-[4], [9], [ l l ] ,  [14], [15]. In signal processing, Mth-band 
filters are used in 1-D [I51 and 2-D [2] perfect reconstruction 
filter banks, nonuniform sampling [4], interpolation filters [ 141, 
and intersymbol interference rejection [ 1 11. Additionally, Mth-band 
filters have found applications in antenna array design [3]. .Ilth- 
band filters are commonly designed as lowpass filters with cut-off 
frequencies at K / J I .  This does not have to be the case. In fact, 
bandpass and multiband Ilth-band filters may be designed using the 
constrained set of cut-off frequencies derived in this paper. 

Fig. 1 shows the desired response of a lowpass filter where d!, and 
are the passband and stopband cutoff frequencies, respectively. 

h,, and h,  are the corresponding errors. The center frequency -i.(. of 
a lowpass filter is defined as 

Let H (  L ) denote the transfer function of an odd length linear-phase 
FIR filter 

and define a noncausal shifted version of f?( :) as H (  :) = z‘ H (  L 1, 
where L = (-Y - 1)/2.  H (  z )  is more suitable for the analytical work 
in this correspondence, whereas I?(: ) is actually implemented. 

Optimal design techniques exist to minimize the frequency domain 
error for linear-phase FIR filters. One such example is the Remez 
algorithm [5], which minimizes the maximum error and therefore has 
an equiripple frequency response. Another algonthm is the eigenfilter 
approach [13], which minimizes the least squares error. 

Let us define a good Mth-band filter as one that has approximately 
the same passband and stopband error characteristics as a non-Mth- 
band optimal filter with the same specifications. In other words, a 
good -21th-band filter is an Jlth-band filter that IS very nearly an 
optimal filter. 
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