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1. Introduction
This document describes use of the Constrained Least-Squares Linear-Phase FIR Filter Synthesis Algorithm 
CLSLP as described in reference [1].  The acronym CLSLP is not used in the technical paper and is only used  
as a local  convenience and as a name for the software package.  The acronym  LPFIR is  used here as an 
abbreviation for Linear-Phase Finite Impulse Response filter.  

2. Linear-Phase FIR (LPFIR) Filters
A Linear-Phase FIR filter (LPFIR) is a special form of FIR filter that preserves the timing relationship between 
signals  of  different  frequencies.   Non-Linear  phase  FIR filters  have  different  phase  responses  at  different  
frequencies  and  these  errors  can  accumulate  as  frequency-dependent  time  delays  in  multilayered  signal-
processing  schemes.   The  linear-phase  constraint  guarantees  that  the  time  delay  of  different  frequency 
components is identical.  It’s also easy to show that cascaded linear-phase FIR filters are themselves linear  
phase.  This means complicated multi-layer filtering schemes can be employed without this cumulative phase 
(timing) degradation.  

The CLSLP filter synthesis algorithm is computationally efficient and fast even on a standard desktop PC.  For 
example, the synthesis of the filter in Section 3 below, a 501-coefficient real-valued filter, takes roughly 1.6 to 3 
ms in total, or about 3 µs per FIR filter coefficient.

3. Using the CLSLP Algorithm
This Section provides illustrations of the practical use and characteristics of the  Constrained Least-Squares 
Linear-Phase FIR Filter (CLSLP) synthesis algorithm which was presumably first described in reference [1].  
CLSLP filters are minimum weighted square-error and possess linear-phase due to their conjugate-symmetric  
coefficient form.  CLSLP filters are generated without a Fourier Transform and the fidelity of the synthesized 
filter coefficients is quite good (e.g.  -150  dB stop-band  in Figure  1 below).  The CLSLP algorithm is also 
computationally efficient and so is ideal for adaptive real-time filtering applications.  For example, the 501-
coefficient linear-phase FIR filter below was synthesized with double-precision floating-point coefficients in 
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1.69 ms on a standard desktop PC.  The center filter segment is an exponential-line segment type, from .1 an .4 
Normalized Hz, with amplitudes of -80 dB and 0 dB at the left and right filter segment edges respectively.  The 
other frequency segments are set to zero.  Note, exponential-filter segments appear as straight lines on dB plots.

3.1. Filter Frequency-Interval Definitions
CLSLP filter coefficients are given in Equations (32) and (33) in reference [1].  Breaking frequency up into sub-
bands  is  intuitive  as  (32)  and  (33)  are  integrals  over  frequency.   This  easily  accommodates  unspecified 
frequency bands as well.  By judiciously choosing the amplitude response functions used for these intervals, 
filter synthesis can be achieved quickly resulting in high-precision LPFIR filter coefficients.

3.1.1. Frequency-Interval Types

There are currently four types of frequency intervals defined.  These intervals are either linear or exponential. 
An exponential interval appears as a straight line on a dB plot while a linear interval appears as a straight line 
on a linear plot.  Additionally these segments employ either absolute or relative weighting.  

Absolute Weighting Type Normal square-error

Relative Weighting Type Normal  square-error  divided  by  the  specified  signal  amplitude.   This  mode 
artificially boosts the fit quality of lower amplitude frequency intervals.  Signal  
amplitudes of zero cannot be used as logarithms are employed.  Use a small value 
instead (e.g. 1e-8).

This is the C++ data structure specification of frequency interval types
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Figure 3.1: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [EXP,ABS].



Due to the open form of this algorithm, additional frequency-interval types can be added as needed.  These four  
frequency-interval  types are computationally efficient  and have,  so far  anyway, sufficed in practical  filter-
design problems.

3.1.2. Segment Parameters

Five numeric values are needed for any of the four segment types mentioned in Section 3.1.1 above.  Namely 
X[0], X[1], Y[0], Y[1], and the weighting factor which is discussed in the next section.  Here X[0] and X[1] are 
interval start and stop frequencies given in  Normalized Hz.   The filter amplitudes at the frequency-interval 
edges  are  specified  as  Y[0]  and  Y[1]  (not  in  dB).   The  frequency  interval  type  is  Linear/Absolute  error 
LS_FIR_Filter::eLin_AbsErr.  

3.1.3. Segment Weights

Segment weights are provided so the filter designer can change the fit quality filter sections.  A value of 1 is 
considered normal weighting, a value of  0 means the fit error for that section is completely ignored, and a 
segment weight of 2 doubles the fit error.  Increasing the segment weight should improve the fit in that filter  
segment.   For example,  the middle filter  segment of the filter  illustrated in the previous section  would be 
specified as X[0]=.1, X[1]=.4, Y[0]=1e-4, Y[1]=1, Type=LS_FIR_Filter::eLin_AbsErr, Weight=1 .

3.2. Using CLSLP Software
This section illustrates installing, building, then running the CLSLP filter synthesis application.

3.3. Installation
It is fairly easy to install CLSLP and synthesize filters on any platform or context.  There is no installation 
procedure per se.  CLSLP is released here as C++20 source code and CMAKE build files.  Additionally Linux 
command files  CLEAN and  BUILD_AND_RUN provide  illustration  of  the  proper  command syntax.   This 
software should build on most modern operating systems and CPU architectures.  Though Linux has been used 
in this software’s design, MS Windows, Mac OS, and many other operating systems can be used as both the  
build and run environment.  Build and run environments can be set separately via compiler switches in modern 
C++ compilers so heterogeneous computer operating systems and architectures can be integrated easily. 

Executing BUILD_AND_RUN should do everything in one step.  The CLEAN command isn’t really necessary 
unless CMAKE gets confused.  CLEAN empties the build directory completely.  
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// Segment types   
//  [F0,F1] in frequency and [A0,A1] in amplitude for Linear Segments   
//  [F0,F1] in frequency and [loge(A0),loge(A1)] in amplitude for Exponential Segments   
//  Note that frequencies are specified in the interval [0,1) Normalized Hz.   
typedef enum  eSegType   
{     
  eExp_RelErr, // exp(B*f+A) segment, relative error     
  eExp_AbsErr, // exp(B*f+A) segment, absolute error     
  eLin_RelErr, // B*f+A segment, relative error     
  eLin_AbsErr  // B*f+A segment, absolute error   
} LS_FIR_Filter;

./CLEAN               # Not really necessary --- clears subdir build/

./BUILD_AND_RUN       # Build then Run the software 



3.4. CLSLP Software Distribution
CLSLP is distributed in C++ source code form.  CMAKE build files are included as well as Linux script files to  
illustrate proper use.

3.4.1. CLSLP Software Distribution

The standard CLSLP release consists of, at least, the files listed at the end of this section.  The  Linux GSL 
special function library is necessary for CLSLP LPFIR filter synthesis.  FFTW and GNUPLOT are used for plot  
generation though neither is needed for coefficient synthesis itself.

A CLSLP release will contain at least the files specified below

•  Start.cpp
•  CLSLP.h
•  CLSLP.cpp
•  AlignedMemAlloc.h
•  CLEAN
•  BUILD_AND_RUN
•  GENERATE_PLOTS

Header file  AlignedMemAlloc.h helps provide functionality for SSE and AVX SIMD vector allocation (faster 
execution).  This module is also the C++ main program entry-point for the software in these tests.  As a local  
convention we use start as part of the main’s filename to identify it.  Filename like Start_x.cpp are used for C++ 
main files in this document.   For example of use see Section 4.1.2 below.

3.4.2. Building Application with CMAKE

Execute  the following commands in  the source code where you want  to  store  your  build files.   The sub-
directory build is commonly used.

./CLEAN             # Cleans the build directory  (optional)

./BUILD_AND_RUN     # Builds (CMAKE) source code and execute program

./GENERATE_PLOTS    # Generate GNUPLOT plots from data files just created (optional)

3.4.3. Spectral Plots

The CMAKE  current directory should now contain two new PNG graphics files:  the Amplitude and Phase  
Response graphs.

3.5. CLSLP Filter Synthesis Applications
The only module we need to write is the  start-file, or file  Start_x.cpp.  This is the C++ main that calls the 
CLSLP filter  synthesis  software.   GenFilter is  then  called  to  synthesize  the  filter  coefficients.   The  code 
fragment below synthesizes an LPFIR Filter  with  501 real-valued double-precision coefficients  into output 
vector  OutCoefs.   This vector is allocated on AVX (SIMD) memory boundaries.  On Linux systems,  -O3 
x5pT=rAu(optimized compilation), is sufficient for basic SIMD support on CPUs that support it.  Intel and 
AMD PC CPUs normally do support it.  
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3.6. Building Filter Synthesis Software
Next we compile and link the software in the previous section into an executable.  We are using CMAKE and 
the GNU C++ compiler build tools.  The following BASH script performs the CMAKE build.

A listing of the CMAKE control file CMakeLists.txt is presented below as a convenience.

The following sequence of commands will perform the C++ build, then execute the synthesized code.  The filter 
coefficients are stored in FilterCoef.dat in ASCII form.
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./CLEAN           # Not necessary though cleans the CMAKE build file

./BUILD_AND_RUN   # Build and Run the CLSLP software

./GENERATE_PLOTS  # Generates GNUPLOT plot files (Amplitude and Phase)

#! /bin/bash

# Generate the CMAKE files
make --fresh   -S .  -B build  -DCMAKE_BUILD_TYPE=RELEASE  -DCMAKE_VERBOSE_MAKEFILE=OFF

# Compile the C++ sources
cmake  --build  build

cmake_minimum_required(VERSION 3.10)

# specify the C++ standard
set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_FLAGS_RELEASE "-O3 -Wall -Wextra")
set(CMAKE_CXX_FLAGS_DEBUG "-g -Wall -Wextra")
# set(CMAKE_VERBOSE_MAKEFILE ON)

# Set some basic project attributes
project (CLSLP
         VERSION  1.00
         DESCRIPTION "CLSLP Filter Synthesis")

file(GLOB SRC_FILES ${PROJECT_SOURCE_DIR}/*.cpp)

# This project will output an executable file
add_executable(${PROJECT_NAME} ${SRC_FILES})

# Include the configuration header in the build
target_include_directories(${PROJECT_NAME} PUBLIC "${PROJECT_BINARY_DIR}")

# Math includes
target_link_libraries(${PROJECT_NAME} PUBLIC "gsl")
target_link_libraries(${PROJECT_NAME} PUBLIC "gslcblas")

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int       NumFiltCoefs = 501;
CLSLP                    Filt;
vector<complex<double>>  OutCoefs(NumFiltCoefs); // Real-valued Coefs stored in Complex

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients    ([0,.5] mod 1.) Normalized Hz     
// ‘Add’          is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz 
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .0, .1,  0.00,  0.00,  1 );
Filt.AddSymmetric( LS_FIR_Filter::eExp_RelErr, .1, .4,  1e-4,  1.00,  1 );
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .4, .5,  0.00,  0.00,  1 );

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter( NumFiltCoefs, OutCoefs );



4. FIR Filter Synthesis Examples
The functionality and use of the Constrained Least-Squares Linear-Phase CLSLP FIR Filter Synthesis algorithm 
is described via a series of simple examples in the following sections.  These sections assume you have the  
software from the CLSLP Software Distribution described in Section 3.4.1 above.

4.1. Sloped-Bandpass Filter Example
We construct a linear-phase real-valued FIR filter to pass .1 to .4 Normalized Hz and null the other frequencies. 
The passband starts at .1 Hz with a  -80 dB response.  It rises either linearly or exponentially, depending on the  
type of test performed, to .4 Hz with a response of 0 dB.  We use a 501-tap linear-phase real-valued FIR Filter  
and the CLSLP algorithm to perform the filter synthesis.  The amplitude spectra are calculated by performing a 
Discrete Fourier Transform (DFT) on a zero-padded vector of filter coefficients.

All linear-phase FIR filters have conjugate-symmetric filter coefficients by the argument given in reference [1]. 
Since this is a real-valued filter, conjugate-symmetric corresponds to symmetric filter coefficients here. 

4.1.1. Exponential/Absolute Weighted-Error Filter Segments

A linear-phase real-valued FIR filter with 501-coefficients is synthesized using the CLSLP algorithm.  We are 
testing the exponential/absolute mode here.  The synthesis takes 1572 µs or 3.14 µs per coefficient.  The filter 
amplitude response is given in the graph below.  The exponential filter segment appears as a straight line in the  
dB amplitude response below.

Figure 4.1: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [EXP,ABS].

FIR filter synthesis is performed via the C++ code fragment below.  The  AddSymmetric function is used for 
real-valued filters [0-.5) and Add for complex-valued filters [0-1).  AddSymmetric adds filter constraints that are 
conjugate-symmetric in frequency so as to guarantee real-valued filter coefficients.  These coefficients are then  
written to the OutCoefs vector.  
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4.1.2. Exponential/Relative Weighted-Error Frequency Intervals

A linear-phase real-valued FIR filter with 501-coefficients is synthesized using the CLSLP algorithm.  We are 
testing the exponential/relative mode.  This synthesis takes about 1556 µs or 3.11 µs per filter coefficient.  The 
filter’s amplitude response is given in Figure 4.2 below.  The exponential filter interval appears as a sloped-line 
in the dB amplitude response.  The little response peak just below .1 Hz can be reduced by adding a small  
triangular filter design section to reduce the abrupt amplitude transition.  The filter response will improve as a 
result.  

The code fragment below is the C++ main program used in this example.
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// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int       NumFiltCoefs = 501;
CLSLP                    Filt;
vector<complex<double>>  OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients    ([0,.5] mod 1.) Normalized Hz     
// ‘Add’          is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz 
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1 );     
Filt.AddSymmetric( LS_FIR_Filter::eExp_AbsErr, .1, .4, 1e-4, 1.00, 1 );     
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1 ); 

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter( NumFiltCoefs, OutCoefs );

Figure 4.2: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [EXP,REL].



4.1.3. Linear/Absolute Weighted-Error Filter Segments

A linear-phase real-valued FIR filter with 501-coefficients is synthesized using the CLSLP algorithm.  We are 
testing the  Linear/Absolute  mode.  This 501-coefficient  filter  can be generated in  3517 µs or  7.02 µs per 
coefficient.  The linear slope appears as a logarithmic curve.

 

The code fragment below is the C++ main program used in this example.

8

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int       NumFiltCoefs = 501;
CLSLP                    Filt;
vector<complex<double>>  OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients    ([0,.5] mod 1.) Normalized Hz     
// ‘Add’          is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz 
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1 );     
Filt.AddSymmetric( LS_FIR_Filter::eExp_RelErr, .1, .4, 1e-4, 1.00, 1 );     
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1 ); 

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter( NumFiltCoefs, OutCoefs );

Figure 4.3: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [LIN,ABS].



4.1.4. Linear/Relative Weighted-Error Filter Segments

A linear-phase FIR (LPFIR) filter with 501-coefficients is synthesized using the CLSLP algorithm.  We are  
testing the  linear/relative mode.  The synthesis takes about  1635 µs or  3.26 µs per coefficient.  The CLSLP 
filter amplitude response is given in Figure 4.4 below.  The linear filter segment appears as a logarithmic curve 
in the amplitude response plot below.  There is a small peak just below .1 Hz though we are close to making the  
-80 dB response.  Adding a small triangular filter design section to reduce the abrupt amplitude transition.  The 
filter response will improve substantially as a result.  This 501-coefficient filter can be generated in 1635 µs or 
3.26 µs per coefficient.  The linear slope appears as a logarithmic curve.

  

The code fragment below is the C++ main program used in this example.  
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// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int       NumFiltCoefs = 501;
LS_FIR_Filter            Filt;
vector<complex<double>>  OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients    ([0,.5] mod 1.) Normalized Hz     
// ‘Add’          is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz 
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1 );
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .1, .4, 1e-4, 1.00, 1 );
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1 );

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter( NumFiltCoefs, OutCoefs );

Figure 4.4: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [LIN,REL].



4.2. Complex-Coefficient Linear-Phase FIR (LPFIR) Filters
The filter response of a real-valued LPFIR filter possess conjugate-symmetry about 0 Hz.  Therefore it suffices 
to specify the the amplitude response only from 0 to .5 Normalized Hz and infer the rest from the symmetry. 
FIR filters with complex-valued coefficients do not have conjugate symmetric filter coefficients.  Therefore 
plots of complex-coefficient FIR filters are usually plotted from -.5 to .5 Normalized Hz.

4.2.1. Example Filter 5

A linear-phase FIR filter with 1001 complex-valued coefficients is synthesized using the CLSLP algorithm.  We 
are testing the complex-coefficient mode so amplitude plots will be displayed from -.5 to .5 Normalized Hz. 

This filter synthesis takes 5544 µs or 5.54 µs per coefficient on a standard PC.  The resultant CLSLP filter’s 
amplitude response is given in Figure 3.1 above.
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// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int       NumFiltCoefs = 501;
LS_FIR_Filter            Filt;
vector<complex<double>>  OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients    ([0,.5] mod 1.) Normalized Hz     
// ‘Add’          is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz 
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1 );     
Filt.AddSymmetric( LS_FIR_Filter::eLin_RelErr, .1, .4, 1e-4, 1.00, 1 );     
Filt.AddSymmetric( LS_FIR_Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1 ); 

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter( NumFiltCoefs, OutCoefs );

// The C++ code segment that generates this 1001-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int       NumFiltCoefs = 1001;
LS_FIR_Filter            Filt;
vector<complex<double>>  OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients    ([0,.5] mod 1.) Normalized Hz     
// ‘Add’          is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz     
Filt.Add( LS_FIR_Filter::eLin_AbsErr, .0,  .05,  0.00,  0.00,  1 ); 
Filt.Add( LS_FIR_Filter::eExp_AbsErr, .05,  .2,  1e-4,  1.00,  1 ); 
Filt.Add( LS_FIR_Filter::eExp_AbsErr, .2,   .5,  1e-4,  1.00,  1 ); 
Filt.Add( LS_FIR_Filter::eExp_AbsErr, .5,   .9,  1.00,  1e-4,  1 ); 
Filt.Add( LS_FIR_Filter::eLin_AbsErr, .9,  1.0,  0.00,  0.00,  1 );

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter( NumFiltCoefs, OutCoefs );



Figure 4.5: Amplitude: Ex5 1001-Coefficient Complex-Value CLSLP LPFIR [EXP,ABS].

4.2.2. Example Filter 6

This filter synthesis takes  23388  µs or  11.4255  µs per coefficient on a standard PC.  The resultant CLSLP 
filter’s amplitude response is given in Figure 3.1 above.
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5. Web Resources
See website  http://www.wejc.com for CLSLP software information and downloads.  Look for the acronym 
CLSLP  on  the  initial  web  page.   The  original  Asilomar  paper  “Constrained  Least-Squares  Design  and 
Characterization of Affine Phase Complex FIR Filters”, reference [1], is included as PDF file, “Constrained Least-
Squares FIR Filter Synthesis.pdf” which is included in the normal CLSLP software distribution.

The  http://www.wejc.com/ website  has  more  information  on  other  computer  science,  engineering,  or 
mathematical algorithms as well as free downloads.  If you have interest in any joint-work or just want to write,  
feel free to write at wejc@wejc.com.  We are in Washington State, United States.
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CLSLP LPFIR Filter Synthesis Errata
Support Files Follow

Requires a Recent GNU or Equivalent C++ Compiler

  [C++20 Language Standard Source Code Used]

Contents

LS_FIR_Filter.h The C++ header file for the filter synthesis software.

LS_FIR_Filter.cpp The C++ source file for the filter synthesis software.

AlignedMemAlloc.h SSE and AVX C++ vector allocator for faster execution on 
SIMD machines.

CLEAN A BASH script that clears the CMAKE build directory.

BUILD_AND_RUN A BASH script that performs a CMAKE build then runs the 
just-built program.

GENERATE_PLOTS A BASH script that generates amplitude and phase plots, as 
PNG files, using GNUPLOT.

Start.cpp The source code listing for the c++ main (where the program 
begins).

Constrained Least-
Squares Design and 
Characterization of 

Affine Phase
Complex FIR Filters

The  Asilomar  paper  “Constrained  Least-Squares  Design  and 
Characterization of Affine Phase Complex FIR Filters” ref 
[1].   Detail  on  the  general  theory  behind  CLSLP  LPFIR 
filters with all the requisite math.  The C++ subroutines 
used here for CLSLP, are coded directly from the definitions 
in this document.
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Constrained Least-Squares Design and Characterization of Affine Phase 
Complex FIR Filters 

Amin G. J a e r  and William E. Jones 

Hughes Aircraft Company, Fullerton, CA 

Abstract 

in many signal processing applications, the need 
arises for the design of complex coefficient finite impulse 
response (FIR) filters to meet the specijcations which 
cannot be approximated by real coefficient FIR jlters. 
This paper presents a new technique for the design of 
complex FIR filters based on minimizing a weighted 
integral squared-error criterion subject to the constraint 
that the resulting j l t er  response be affine phase (i.e., 
generalize linear phase). The technique makes use of the 
necessav and sufficient conditions for a causal complex 
FIR jilter to possess afline phase which are explicitly 
derived here. The method is non-iterative and 
computationally efficient. Several illustrative filter 
design examples are presented with excellent results. 

1. Introduction. 

The subject of the design of finite impulse 
response filters has a long history, as evidenced by a 
parhal list of publications [l]-[5]. For the most part, 
however, the previous publications have been concemed 
with the design of real coefficient FIR filters whose 
fiequency response functions H# necessarily satisfy 
~ ( f ) = ~ * ( - f ) ,  where * denotes complex conjugate. For a 
sigruficant class of sensor signal processing problems, 
however, the desired frequency response will not 
necessarily satisfy this condition, e.g. the design of 
asymmetric notch filters for clutter cancellation problems 
in airborne radar or moving-platform active sonar 
systems. These systems and, in general, systems where 
analyt~c signals are to be processed to yield filter 
responses not satisfying this condition, mandate the need 
for complex coefficient FIR filters. 

Although several authors have addressed the 
design of FIR filters by complex Chebyshev 
approximations [6]-[8], their works were restricted to real 
coefficient filters and their methods do not generalize 
readily to the complex coefficient case. Preuss [9] 
addressed the design of complex FIR filters using the 

Chebyshev norm and presented some interesting 
examples. However, his method involved a heuristic 
modification of the Remez exchange algorithm resulting 
in an iterative procedure that is not guaranteed to 
converge to the optimal solution. Weighted least-squares 
techniques [lo], [ l l ]  also seem to have been applied only 
to the real coefficient case and, unlike the methods of this 
paper, appear to require a dense fiequency sampling grid 
to model the desired amplitude response. 

This paper is concemed with the design of 
complex coefficient FIR filters to satisfy a specified 
multiband amplitude response, based on minimizing a 
weighted integral squarederror criterion subject to the 
constraint that the resulting filter response possesses 
aflne phase (i.e. linear phase with an offset). The 
incorporation of the affine phase constraint leads to good 
filter design and, moreover, is often a requirement in 
many system applications. The minimization is carried 
out subject to appropriate constraints on the filter 
coefficients (e.g. conjugate-symmetry constraints) needed 
to satisfy the a!Xne phase property. These constraints for 
complex FIR filters are explicitly derived here in general 
form. An important feature of the present work is the use 
of the piecewise linear or exponential models to spec@ 
the desired multiband amplitude response, leading to an 
efficient, closed-form evaluation of certain integrals 
required in the computation of the optimal filter 
coefficient vector. This avoids the need for solving a 
discretized problem using a dense fiequency sampling 
grid for the desired amplitude response, with the attendant 
problems in the transition bands. The filter design 
method requires on~y the solution of a set of N 
simultaneous linear equations (where N is the filter 
length) with a Hermitian-Toeplitz coefficient matrix, 
which can be obtained in only O(N*)  computations using 
the efficient Levinson or Trench algorithms [ 131. 

Some illustrative complex coefficient filter 
design examples are also presented, including the design 
of asymmetric notch filters required for clutter 
suppression, and bandpass differentiators, with excellent 
results in general and direct comparison to previously 
published results for the latter example. Further 
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examples, and the design of unconstrained complex FIR 
filters, canbefoundin [14]. 

2. Conditions for causal complex-valued FIR 
fdters to possess affine phase 

The conditions for real-valued causal FIR filters 
to possess linear phase, including linear phase with an 
offset, more appropriately termed afJine phase, are well 
known and have been derived in [4] and [5].  However, 
their methods do not directly extend to the complex 
c&€icient FIR filter case. It also appears that the 
necessary and sufficient conditions for complex FIR filters 
to be afthe phase (including strict Linear phase) do not 
appear to have been previously derived or stated, although 
special cases have been used in the literature [9]. The 
filter response for a causal N length FIR filter with 
complex coefficients h(O), h( l ) ,  . . . , h( N - 1 )  is given by 

n=O 
where, in (l), the sampling interval is taken as equal to 1 
second so that f represents normalized frequency. We 
deduce, in the following theorem, the necessary and 
s a c i e n t  conditions for ~ ( f )  to have an affine phase 
function 

for some a and p. The proof does not require separate 
treatments of even and odd length filters and is more 
general and precise than previous ones pertaining to the 
real filter case [ 5 ] .  In order to exclude filters with leading 
or trailing zero coefficients which effectively alter the 
length of the filter, we impose the conditions h(0) z 0, 

The main results of this Section are contained in 

< p ( f ) = - 2 g a + p  (2) 

h ( N -  1 )  # 0.  

the following theorem and its corollaries. 

Theorem: The jilter response of a causal 
complex coeflcient FIR filter, with coeficients 
h ( ~ ) ,  h ( l ) ,  . . . , A ( N  - 1 )  where h ( ~ )  # 0, h( N - 1 )  # 0, 
is afine phase of the form (2) if and only if 
h(n) = tJ2S h'(N - 1 - n),  
Furthermore, the delay term a is necessarily given by 
a = ( N - 1)/2 

n = o,.*., N - 1  

proof: We prove necessity, i.e. the "only if" part, 
first. The affine phase property implies that (1) can be 
rewritten in the form 

n=O I 

where the term inside the braces is purely real, i.e. equal 
to its conjugate. Hence, equating this term to its 
conjugate and letting z = eizd results in, explicitly, 

(4) h(0)z" + h( 1)za-I + . . . + h( N - l )Z=-N+' 

In (4), z and its powers constitute a set of complex 
exponential functions that are linearly independent [ 151. 
Hence (4) can only be satisfied for all values of z by 
equating the coefficients of like powers of z on both sides 
of (4). Since the powers of z on the left and right sides of 
(4) are, in descending order, {a, a - 1, . . . , a - N + 1 )  
and { N - 1 - a, N - 2 - a,. . . , - a} respectively and 
since h(O)#O, h ( N - I ) # O  by assumption, we must 
have that the highest and lowest powers in the former set 
fall within the range of the latter set, i.e., 

(5) 
(6) 

But then, it follows from ( 5 )  that 0 5 a I (N - 1)/2 
and from (6) that (N - 1)/2 I a I N - 1 ,  from which 
it follows that 

(7) 
precisely. Substituting (7) into (4), letting 
m = N - 1 -n on the right side of (4) and rearranging 
yields 

-a I a I N - 1 - a  
-a I a - N + 1  5 N - 1 - a  

a = (N - 1)/2 

n=O 1 
(8) 

Equating coefficients of same powers of z on both 
sides of (8) (because of linear independence of the 
complex exponentials of z and its powers) yields 

h(n) = eJ21 h * ( ~ -  1 -e), n = 0, ..., N- 1 (9) 
which, together with (7), proves the necessity part of the 
theorem. It is noted that setting p= o or *% in (9) 

yields the conjugate symmetric and anticonjugate 
symmetric filters respectively: 

(10) 

(11) 

h(n)=h*(N - 1-n), n = O,. . . ,N-  1 

h(n) = - h*(N - 1 - n),  n = 0,. . . ,N - 1 

Sufficiency: This follows immdately; for a 
proof see [14]. 

Corollary 1: If the filter coefficients are 
restricted to be real, it can be shown that the conditions 
(9) result in just two Merent constraints 

(12) h(n) = h(N - 1 -n), n = 0,. . . , N - 1 
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h ( n ) = - h ( N - 1 - n ) ,  n=o, ..., ~ - 1  (13) 
which d e h e  the symmetric and anti-symmetric filters 
respectwely, in agreement with [ 5 ] .  The proof is omitted 
here for lack of space but can be found in [ 141. 

Corollarv 2: We will show that it suflices for 
filter design applications to apply the theorem for /.?= 0 
and rotate the output phase by p. In (3), let 
ho(n) = e-jS h(n) where the h(n) satisfy the conditions 
of the theorem. For n = 0,. . . , N - 1 ,  we have 

(14) 

and 
(15) 

h( n )  = ej2p h* ( N - 1 - n) 

h,,(n) = e18 h * ( ~  - 1 -n) 

= h , . ( N - l - n )  
Hence ho(n) satisfies the conddons of the theorem for 
strict linear phase (with p= 0). Hence the filter response 
(3) can be written as 

where 
H(f) = e’j Ho(f) (16) 

J 
with a = ( N - 1 ) / 2 .  Ho(f), as given by (17), is the 
frequency response of a strict linear phase filter and hence 
(16) states that the frequency response of an arbitrary 
affine phase filter can be obtained by multiplying H,, (f ) 
by e’’, as was to be shown. 

3. Linear phase FIR filter design by 
constrained weighted least-squares method. 

We consider here the problem of designing 
complex coefficient FIR filters to approximate a specified 
complex valued frequency response by employing a 
weighted integral least-squares error criterion. Let 
zD ( f )  be the desired complex valued frequency response 
and W ( f )  be a real nonnegative piecewise continuous 
weighting function. z D ( f )  is of the form 

zD(f) = aD(f) e’*’(’) where u D ( f )  and O D ( f )  are 
the desired amplitude and phase responses respectively. 
Let b = [ h(01, h ( l ) ,  . . ., h ( ~  - 1 )  1‘ represent the 
complex coefficient FIR filter of length N .  H f l ,  as given 
by (1) can be written as 

(18) H ( f )  = 8 (f) h 

eiZ4N-‘)f  lr where d ( f ) = [  1,eJ2#, ..., 

and the superscripts T and H denote the transpose and 
conjugate transpose operators. We seek to obtain the 
coefficient vector h_ that minimizes the weighted integrd 
squared-error criterion 

subject to the constraint (1). It is noted that the criterion 
(19) allows for zD(f) being specified over compact 
subsets of the normalized frequency interval [0,1) and 
that W( f ) may equal zero over some of the subsets. In 
the design examples given in Section 5, W( f) is chosen 
so that criterion (19) becomes one of minimizing the 
relative integral squared error. This is discussed more 
fully in Section 4. 

The conjugate symmetry constraint (10) on the 
filter coefficients can be compactly represented as 

where E is the N x N exchange matrix with ones on the 
crossdagonal and zeros elsewhere. The exchange matrix 
has the properties that ET = E and E 2  = I (the identity 
matrix) so that E-’ = E. Note also that the formulation 
(20) applies to both even and odd length filters, so that 
separate treatments of these two cases are unnecessary. 

The cost function (19) is a real-valued, 
nonnegative function of the complex vector !I-. Its 
minimization may be accomplished by the use of a 
complex gradient operator and its associated matrix- 
vector calculus operations as described by Brandwood 
[ 131. Let 12 = b, + j by where hl and by are the real and 
imaginary components of the complex vector h. Define 
the complex gradient operator as 

Then a necessary and sufficient condition for a stationary 
point of J(h_) is that V,, J(b)  = g. Equation (19) can be 
written as 

h’=Eh_ (20) 

V , = 1 / 2 ( i Y a x - i q a y )  (21) 

Using the constraint equation h’ = E I! or, equivalently, 
hH =hT E,weget 

(23) 1 [ + b T E d ( f ) P ( l ) ! !  

IzLl(f)l2 -z;(f)dH(f)h 
J(b)= J;wlf> - b T W f ) z g ( f )  df 

Differentiating with respect to h_ (see [ 131 for details on 
applying the complex gradient operator to linear and 
quadratic forms), and equating to 0 yields 
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where R = E d( f ) d_"( f ). 
vields 

Rearrangement of (24) 

j;w(f) [%(.r)d_(f) + .;,(f)d*(f)]df 
Although (25) expresses the filter coefficient vector h_ as 
the solution of a set of simultaneous linear equations, it 
can be simplified further to yield a more compact and 
computationally efficient form. First note that since 
R = E d_(f )  &(f) and pre-multiplication of a matrix 
by E reverses its rows, we can readily show that R = RT. 
Now let 

(26) Q = ji W f  ) d ( f )  dH ( f ) d f  

L =  p(f ) [ E z , ( f ) d _ ( f ) + z ~ ( f ) d _ ' ( f  )]df (27) 
Then (25) reduces to 

The Hermitian matrix Q is also Toeplitz since its (m,n)th 

element, given by j dw( / )  e'2n(m-n)f df , depends only on 

the difference (m - n). Equation (28) represents a system 
of N simultaneous linear equations, with a Hermitian- 
Toeplitz coefficient matrix, for the solution of the filter 
coefficient vector h,. Additionally, since the 
Vandermonde type vectors d ( f )  are linearly independent 
for distinct values of f in the interval [ 0, I), the matrix Q 
will be of 111 rank N (and positivedefinite) as long as 
the range of the integration in (28) encompasses any 
interval or at least N discrete distinct points in the 
frequency domain where W ( f )  is not zero. This will be 
true for any non-trivial, well-posed filter design problem, 
resulting in a unique solution for h _ .  The matrix Q is 
completely specified by either its first row or column and 
the system of linear equations (28) can be efficiently 
solved in O ( N ~ )  operations by the Levinson recursion or 
Trench algorithm [12], resulting in a significant 
computational savings over general matrix inversion 
techniques which require O(iv3) operations. 

Note that h_,  as given by the solution of (28) 
actually satisfies the conjugate-symmetry constraint 
regardless of the specification of the desired phase 
response Q ) D (  f ), which need not be linear. However, 
since the constraint (20) would only be imposed for linear 
phase filter design problems, it would be appropriate for 
the desired phase response O D ( f )  to be specified as 
linear phase with a delay of ( N -  1)/2, i.e. as 

Q h = l / 2 E r  - (28) 

@ D ( f )  = - 2 @( N - 1)/2. 

The Q matrix and the r, vector, required in (28) 
are speciiied as follows: The first column of the 
Hermitian-Toeplitz matrix Q, which completely defines 
Q, is given by 

df m=1, ..., N (29) [Q],, = I , W ( f )  e J 2 n ( 4 /  

Using aD(f)  = - 2 #( N - 1)/2, the nth element of the 
L vector by (27) can be shown to be given by 

In the filter design examples presented in Section 5 the 
weighting function corresponds to the squared relative 
error. Furthermore, since most filter design problems, 
including the examples in Section 5, require 
approximating the frequency response over multiple 
subbands, which may be disjoint, the weighting function 
specializes to 

where M is the number of fiequency subbands of interest, 
a, ( f )  is the desired amplitude response over the kth 
subband and c k  are additional discrete weights included 
in (3 1) to permit emphasizing certain frequency segments 
over others. Under these assumptions, (29) and (30) 
reduce to 

(33) M -J2 d( n-( ' 4 4 2 )  

[[In =2 J:,2 e aDk( f>  df n = I . .  ... N 
k=l 

Two particular types of amplitude response functions 
a&), the linear amplitude and the linear log-amplitude 
or exponential response models, are employed in the 
examples of Section 5.  These result in the closed-form 
expressions for the integrals in (32) and (33) which are 
readily evaluated and also yield excellent performance as 
demonstrated in Section 5. 

4. Weighting and amplitude response models. 

In this section two specific amplitude response 
functions, the linear and exponential, used in conjunction 
with relative square-error weighting, are used as models 
for the linear phase complex FIR filter design technique, 
the constrained technique, defined in Section 4. The 
linear model is defined by 

(34) a D k ( f >  = ak + P k  f 

and ak = A,, - <,P, 
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and the exponential model by 
a, (f ) = e r k  + st f 

-2Yk e 
[ Q k ] , ,  = ck e 2 ( l n ( " J - 1 ) - 6 k )  

(35) 

m = I ,  .... N 

(43) 

- f ( J Z d n - ( N - 1 ) / 2 ) + 6 & )  e 
= - 2ck e-" ( j 2 d n - ( N - 1 ) / 2 ) + 6 k )  

.- . 
for the kth frequency segment. 

The exponential model implies that the log- 
amplitude is linear over the frequency segment whch is 
particularly suitable for many applications. The 
emnentiai model is ais0 computatiodiy more efficient 

where E i ( x )  is the exponential integral as defined in 
Gradshteyn and Ryzhik [16] and Abramowitz and Stegun 
[17]. It can be easily evaluated in terms of the sine and 
cosine integrals si(') and c~(x) related by 

f =FkZ (39) 

n =  1 .  .... N 

the expressions 

The general result of evaluating (40) and (41) is given by 

5. Illustrative filter design examples. 

This section examines two applications of the 
constrained algorithm, the asymmetric v-notch filter and 
the bandpass differentiator examined by Preuss [9]. The 
examples in thls section employ the amplitude response 
models of Section 4 used in conjunction with relative 
squareerror weighting. 

The filter design examples in this Section were 
generated using a MATLAB program based on the results 
of Sections 3 and 4. By exploiting the Toeplitz structure 
of matrix Q in as defined in Section 3, the Levinson or 
Trench algorithms [12] can be employed to reduce the 
computational complexity of the solution from an o ( n 3 )  

solution to an O ( n 2 )  solution. Using these techniques the 
10 1 -tap V-Notch filter design problem below was 
generated in 3.35 seconds in MATLAB on an 486DX 
JBM-PC clone running at 50 MHz. 

The Asymmetric V-Notch Filter Design 
Problem: The asymmetric V-Notch filter examined here 
is defined by the speciftcation 

0 dB, O ~ f 4  (45) 

0 dB, .8Sf 4.0 
where the quantities in brackets in (45) are the end-points 
of the exponential amplitude response function over the 
frequency interval specified ( [ A k l . A p 2 ]  for the kth 
frequency interval in (34)). The asymmetry in the desired 
amplitude response can arise in moving platform radar or 
active sonar systems where the unwanted clutter returns 
exhibit Doppler shifts that are largely "down-Doppler" 
relative to the Doppler frequency of the moving platform. 
Due to this asymmetry, the filter cannot be synthesized by 
conventional real FIR filter design techniques as the 
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uxflicients can never be represented as a purely real 
sequence. For this example, each frequency subband is 
equally weighted in the sense that the ck parameter 
defined in (31) is equal to I for each segment. Equations 
(28), (38) and (39) are used to evaluate the filter 
coefticients as functions of the parameters specified in the 
design specification. 

Figure 1 illustrates a sample asymmetric v-notch 
filter generated with 101 coefficients. The filter 
coefticients are indeed conjugate-symmetric as expected 
from the arguments made in Section 2. The relative error 
of the filter synthesis 

is plotted in Figure 2. The RMS error used here is 
defined bv 

The 101-tap linear phase V-notch filter acheves 
maximum relative error of about 0.47 dl3 and an rms error 
of .004759. 

I 1 I J 
0.e 0.- 0.0 0.0 1 

rv-9Y-”DI. HI 

Figure 1. 101-Tap Asymmetric V-Notch Filter Amplitude 
Response. 

0.. I I I I 
I I l l  I 

e -.= 
c 
4 
- 0  

-0.0 

Figure 2. 101-Tap Asymmetric V-Notch Filter Error. 

The Bandpass Differentiator: In this Section 
the linear phase bandpass differentiator filter specified by 
Preuss [9] is generated using the constrained technique as 
described in Sections 3 and 4. In Preuss’ paper this filter 
is specified as 

(48) 

Note that this filter contains an affine phase offset 
produced by thej constant in (48). By the argument given 
in Section 2, it suffices to ignore this affine phase offset 
for the purposes of generating a linear phase filter and 
later multiply the complex FIR filter coefficients by thisj 
term which forms the final filter. This post-multiplication 
doesn’t change the filter‘s amplitude response. 

The realization of the bandpass differentiator as 
specified in (48) using the constrained algorithm is given 

Hd(f) { ~ 2 $  
sf 0 03750 5 f 5 042500 

0 a57500 i J 5 0.96250 

bY 
[.0710,.8700] ck = 2 x lo6, ,0355 5 f <.4350 

.43505f 4 6 5 0  
[.0009,.0009] Ck = 1, S650 r; f +. 9625 

lH,( f 1 = [.8700,.0009] ck = 100, i 
where the quantities in brackets are the end-points of the 
linear amplitude response h a i o n  over the frequency 
interval specified ([.+I&] for the kth frequency interval 
in (35)). The quantities ck are the auxiliafy weights 
applied to the subbands as defined in (31). This 
realization was found to yield satisfactory fit errors in the 
passband while preserving acceptable stop-band rejection. 
It is also desirable to weight the stop-band to a lesser 
degree than the passband to prevent an inordinate amount 
of effort being employed in flattening the stop-band. The 
results of our realization of the bandpass differentiator can 
be seen in Figure 3. 

The filter design fit error used in this example is 
specified by 
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Preuss obtained a relative peak amplitude error of 
+z x lo4 over the frequency interval [.0375,.4250]. 
The results of the application of the constrained algorithm 
are given in Figures 3 and 4. Note that the constrained 
algorithm achieves a smaller relative error over most of 
the passband (rms value of 1.084 x lo4), although the 
peak relative error is greater at  about -4.3 x lo4. This 
result is consistent with the nature of the weighted 
integral squared error and the Chebyshev criteria. 

Fig 3. 32-Tap Bandpass Differentiator Amplitude Response. 

Fig 4. 32-Tap Bandpass Differentiator Filter Fit Error. 
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Correspondence 

Weighted Least-Squares Design and 
Characterization of Complex FIR Filters 

Amin G .  Jaffer and William E. Jones 

Abstract- This correspondence presents two novel weighted least- 
squares methods for the design of complex coefficient finite impulse 
response (FIR) filters to attain specified arbitrary multiband magnitude 
and linear or arbitrary phase responses. These methods are computation- 
ally efficient, requiring only the solution of a Toeplitz system of N linear 
equations for an N-length filter that can be obtained in o( N 2 )  operations. 
Illustrative filter design examples are presented. 

I. INTRODUCTION 

The subject of real FIR filter design using both the weighted 
least-squares error (WLS) and Chebyshev criteria has been addressed 
extensively in the past [1]-[4]. More recently, the design of complex 
FIR filters that satisfy specified asymmetric amplitude or phase 
responses necessary in radar/sonar clutter suppression problems and 
other applications has been considered [SI-[9]. Nguyen [7] and Pei 
and Shyu [8] have employed the eigenfilter technique to approxi- 
mately optimize the complex FIR filter WLS error design criterion. 
The eigenfilter technique, in addition to being only approximately 
optimal, requires the computation of a principal eigenvector by 
an iterative technique, where the number of iterations required for 
convergence can be quite large, resulting in heavy computational 
demands. 

Two complex FIR filter WLS synthesis techniques-one for ar- 
bitrary phase response (unconstrained method) and the other in- 
corporating the linear phase constraint (constrained m e t h o d t a r e  
developed here. The direct WLS optimization methods presented here 
utilize the complex gradient operator [lo], which avoids decomposing 
the complex variables into real and imaginary parts. The linear- 
phase constrained method is developed using the complex Lagrange 
multiplier constraint, which is valid for either odd or even length 
filters. The filter coefficient vector is obtained very efficiently for 
both techniques as the solution of the resulting Hermitian-Toeplitz 
system of linear equations using a noniterative method (Levinson 
algorithm) [l 11. Additionally, for a special but useful class of filters, 
our techniques result in a solution that altogether avoids the need for 
matrix inversion or the solution of a system of linear equations, thus 
reducing the computational demands significantly. The relationship 
between the constrained and unconstrained techniques is also exam- 
ined. Finally, two illustrative filter design examples are presented 
with direct comparison of example two with the eigenfilter design 
example of Nguyen [7]. 

11. WEIGHTED LEAST-SQUARES COMPLEX FIR FILTER DESIGN 

We derive here weighted least-squares algorithms for designing 
complex FIR filters to approximate arbitrary magnitude response 
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The authors are with Hughes Aircraft Company, Fullerton, CA 92634-3310 
USA. 

IEEE Log Number 9413863. 

constrained to have affine (generalized linear) phase as well as FIR 
filters with arbitrarily specified magnitude and phase responses. The 
conditions for complex FIR filters to posses affine phase are known 
in the literature and are also explicitly derived in [9]. Although the 
affine phase conditions are slightly more general, it suffices for our 
purposes to incorporate only the conjugate-symmetric constraints on 
the filter coefficients that generate linear phase as other filters of this 
class can be readily obtained from this form. 

A. Constrained Weighted Least-Squares Technique 
The conjugate-symmetric constraints are given by h ( 1 1  ) = h * (S - 

1 - n ) ,  n = 0.. . . , I\- - 1, where h = [h(O).  hzipyy. . . . . h (3- l)]' 
represents the complex FIR filter coefficient vector.' We seek to 
obtain the coefficient vector h that minimizes the weighted integral 
squared-error criterion over the normalized frequency interval [0, 1)  

J (h )  = Ul( f ) l .D( f )  - dH(f)hl'df (1) I '  
subject to the above conjugate-symmetric constraints. Here, U!( f )  is 
a nonnegative frequency weighting function, :U( f )  is the desired 
complex frequency response, d(  f ) is the frequency "steering" vector 

dH (f )b represents the filter frequency response, and f represents 
the actual frequency normalized by the sampling frequency. The 
objective function given by (1) can accommodate arbitrary desired 
multiband magnitude responses including zero weighted frequency 
intervals. 

The conjugate-symmetric constraints can be compactly represented 
by h* = Eh, where E is the A: x N exchange matrix with ones on 
the cross diagonal and zeros elsewhere. Note that E = E",  and 
E 2  = I ,  where I is the identity matrix. Incorporation of this vector 
constraint via the complex Lagrange vector formulation yields the 
augmented objective function 

given by d ( f )  = [I, e I 2 " f . .  . . . e J 2 a ( N - 1 ) f  ] , the inner product 

(2) H 
J1 (h) = J ( h )  - X7 [h' - Eh] - 1 [b - Eh*].  

Note that J(h) and Jl@) are both real-valued functions for any 
complex vector h. Expanding J ( h ) ,  differentiating with respect to 
according to [lo] (which treats a complex variable and its conjugate 
as independent variables) and equating to the null vector to satisfy 
the condition for the unique minimum yields 

Let 

( 5 )  

Note that Q is a Hermitian-Toeplitz matrix that is fully defined by 
either its first row or column. Use of (4) and ( 5 )  in (3) yields 

Q ~ - E = X -  EX*. (6)  

'The superscripts *, T ,  and H represent conjugate, transpose, and 
conjugate-transpose operations, respectively. 
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Let - = X- EX'. Then 

Qh = g + - ?. (7) 

= E h  is satisfied. 

E Q , = E & + E y = E c - ? * .  - - (8) 

In addition, since Q is Hermitian-persymmetric, EQ = Q*E [ l l ] ,  
and hence 

We next determine -, so that the constraint 
From (6) and (7), we have that 

Q*EL= E g - ; ' .  - (9) 

Subtracting (9) from the conjugate of (7) results in 

Q*(h* - Eh] = 27' - + g* - Eg. 

7 = -[E&' - lL] 

(10) 

Applying the constraint = E h  to (10) results in 
1 

- 2  
and the solution for the filter coefficient vector as 

(11) 
1 1 -1 

2 -  2 
Qh= - [ u + E g * ]  o r b =  -Q [g+Eg*] .  

B. Unconstrained Weighted Least-Squares Technique 
We derive here the unconstrained weighted least-squares com- 

plex FIR filter suitable for satisfying arbitrarily specified magnitude 
and phase responses (including nonlinear phase responses) that are 
necessary in many system applications. The solution immediately 
follows from the derivation in Section 11-A by deleting the Lagrange 
multiplier constraints in (2) ,  which results In 7 = 11 in (7), yielding 
the solution for the filter coefficient vector as- 

(12) 4 h  = II or h = 4-'U - 

where Q and (I are defined as before in (4) and (5). 

C. Remarks 
1) It can be readily verified that the constrained weighted least 

squares solution given by (1 1) does indeed satisfy the constraint 
- h' = Eh,  producing linear phase response, regardless of the 
desired complex response zu (f ). The unconstrained solution 
given by (12) of course does not satisfy this property in general. 
However, it of interest to note that if the desired response is 

z n ( f )  = n ~ ( f ) e J O D ( j ) ,  where n u ( f )  is the desired magni- 
tude response and ou ( f ) is linear phase with delay T = (S  - 
1) /2 ,  then the two solutions become one and the same. This 
can be seen by substituting zo(f) = n u ( f ) r  in 
the expression for g in (5) and simplifying, resulting in the nth 
element of g being given by 

- , 2?Tf ( . \ - l ) / 2  . 

It can also be shown that the nth element of Ex' is given by 
the same expression, whereupon Eg* = and (11) becomes 
- h = Q-'g, which is the same as (12). 

2) Since the matrix 4 is Hermitian-Toeplitz and, hence, fully 
defined by either its first row or column, the solution for the 
filter coefficient vector can be obtained quickly and accurately 
in o( ) operations by the Levinson recursion algorithm [ 1 I ]  
as opposed to general matrix inversion methods, which require 
o( S' ) operations. Furthermore, our methods obtain the true 
WLS solution, whereas the eigenfilter method [5], [7] obtains 
an approximate WLS solution that requires a variable number 
of iterations to compute the principal eigenvector (depending on 
the eigenvalue spread) and that necessitates o( .V2) operations 
per iteration. Note also that as a special but useful case, the Q 
matrix in this correspondence reduces to a scalar multiple of the 
identity matrix when the weighting function is uniform and the 
desired amplitude response encompasses the entire frequency 
interval without unspecified frequency bands, allowing the 
solution of the coefficient vector to be obtained trivially. 

3) Since the constrained technique results in a conjugate- 
symmetric filter, it would ostensibly appear computationally 
attractive to obtain the solution directly in terms of half the 
coefficient vector for even length filters. However, the resulting 
solution is actually more demanding computationally than the 
one presented here due to the more complicated and non- 
Toeplitz structure of the associated matrix of the system of 
linear equations (see also [12]). 

111. ILLUSTRATIVE FILTER DESIGN EXAMPLES 
In this section, we examine two filter design examples that illustrate 

the use of the constrained and unconstrained WLS techniques pre- 
sented here. A linear-phase asymmetric ?>-notch filter design example 
suitable for radar/sonar clutter suppression applications is used to 
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Fig. 2. Arbitrary transfer function example of Nguyen [7] using the unconstrained WLS method of this correspondence: (a) Magnitude response; (b) 
error in magnitude response; (c) group delay; (d) error in group delay. 

illustrate the use of the constrained technique, whereas a direct 
comparison with the results of Nguyen [7] for his arbitrary transfer 
function filter design example is used to illustrate the use of the 
unconstrained technique. 

The techniques developed here necessitate the evaluation of certain 
integrals for the computation of Q and 3 given by (4) and (5). In 
general, these integrals would require numerical integration; how- 
ever, for an important subclass of practical filter design problems 
(including all of the examples presented here), these integrals are 
readily evaluated in closed form. In particular, integrals arising 
from filter design problems specified by multisegment piecewise 
linear and exponential amplitude (linear in log-amplitude) response 
specifications with uniform or inverse squared-error weighting can be 
evaluated in closed form, resulting in improved numerical efficiency 
and accuracy. 

The Linear Phase Asymmetric V-Notch Filter Design Problem: 
The linear phase asymmetric v-notch filter design example is specified 
by the desired amplitude response function 

O d B ,  0 5 f 4 0 . 5  
[0, -401 dB, 0.5 5 f 4 0.7 
[-40,0] dB, 0.7 5 f 4 0.8 

0 dB, 0.8 5 f 4 1.0 

where the quantities in brackets specify the amplitudes at the end- 
points of the exponential curve segment (linear in log-amplitude) that 
specifies the desired amplitude response in the frequency interval 
specified. The exponential amplitude response function is given by 

for the lcth frequency interval [Fk l ,  F k z )  of the filter design speci- 
fication. As the asymmetric 21-notch filter has a 40-dB variation in 
its amplitude response, a minimum relative squared error estimation 
criterion is employed to balance the filter fit error amongst the 
specified frequency intervals evenly, resulting in the specification of 
the weighting function as 

A full derivation of the Q matrix and 3 vector for the relative 
squared error weighting and the linear and exponential amplitude 
response models is given in [9].  As this filter's amplitude response 
is asymmetric about any point in the normalized frequency domain 
(0 to 1 Hz.), it can only be generated with a complex FIR filter 
design technique; there is no purely real representation for these 
filter coefficients. 
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The amplitude response obtained by use of the constrained al- 
gorithm for the 101-tap complex linear phase FIR filter is given 
in Fig. l(a), and the relative squared error, which is expressed in 
decibels, is given in Fig. l(b). The constrained algorithm achieves a 
peak relative error of 0.41 dB at the frequency interval edges and 
a root-mean-square (RMS) error of 0.004759. The use of a relative 
squared-error minimization criterion is evident in the evenness of the 
error ripples across the large range of the filter’s amplitude response 
Fig. l(a). 

The Arbitruty Filter Transfer Function Design Example of Nguyrn 
[i]: Example 5,  taken from Nguyen [7], is used to compare the 
unconstrained WLS technique presented here with the eigenfilter 
method of [7]. Nguyen’s example consists of a specification with 
four passbands and one stopband with specified amplitude and phase 
requirements that, due to its asymmetry, necessitates a complex FIR 
filter synthesis technique. The unspecified frequency intervals are 
unweighted and do not contribute to the total fit error. Nguyen’s 
example is specified with an absolute squared-error optimization cri- 
tenon rather than the relative squared-error criterion used previously. 
The amplitude response attained by the unconstrained WLS technique 
for a 50-tap FIR filter is given in Fig. 2(a), the amplitude error in 
Fig. 2(b), the group delay in Fig. 2(c), and the group delay error 
in Fig. 2(d). The corresponding Rh4S errors are also shown in the 
figures. While the results obtained here are nearly identical to those 
of Nguyen, they represent the true WLS solution, which is also 
computed much more efficiently than the eigenfilter technique of 171 

also Remark 2). 

REFERENCES 

T. W. Parks and J. H. McClellan, “Chebyshev approximations for 
nonrecursive digital filters with linear phase,” IEEE Trans. Circuit 
Theory, vol. CT-19, no. 2, pp. 189-194, Mar. 1972. 
L. R. Rabiner and B. Gold, Theory and Applications of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. 
X. Chen and T. W. Parks, “Design of FLR filters in the complex domain,” 
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, no. 2, 
pp. 144-153, Feb. 1987. 
Y. C. Lim, J. H. Lee, C. K. Chen, and R. H. Yang, “A weighted 

least squares algorithm for quasiequiripple FIR and IIR digital filter 
design,” IEEE Trans. Signal Processing, vol. 40, no. 3 ,  pp. 551-558, 
Mar. 1992. 
P. P. Vaidyanathan and T. Q. Nguyen, “Eigenfilters: A new approach 
to least-squares FIR filter design and applications including Nyquist 
filters,” IEEE Trans. Circuits Syst., vol. CAS-34, pp. 11-23, Jan. 1987. 
K. Preuss, “On the design of FIR filters by complex Chebyshev 
approximation,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 
37, no. 5, pp. 702-712, May 1989. 
T. Q. Nguyen, “The design of arbitrary FIR digital filters using the 
eigenfilter method,” IEEE Trans. Signal Processing, vol. 41, no. 3, pp. 
1128-1139, Mar. 1993. 
S .  C. Pei and J. J. Shyu, “Complex eigenfilter design of arbitrary 
complex coefficient FIR digital filters,” IEEE Trans. Circuits Syst., vol. 
40, no. 1 ,  pp. 3240, Jan. 1993. 
A. G. Jaffer and W. E. Jones, “Constrained least-squares design and 
characterization of affine phase complex FIR filters,” in Proc. 27th Ann. 
Asilomar Con$ Signals, Syst., Comput., Nov. 1993, pp. 685491. 
D. H. Brandwood, “A complex gradient operator and its applications in 
adaptive array theory,” Proc. Inst. Eiec. Eng., vol. 130, pts. F and H, 
no. 1, pp. 11-16, Feb. 1983. 
S. L. Marple, Digital Spectral Analysis with Applications. Englewood 
Cliffs, NJ: Prentice-Hall, 1987. 
A. G. Jaffer, W. E. Jones, and T. J. Abatzoglou, “Weighted least- 
squares design of linear-phase and arbitrary 2-D complex FIR filters,’’ 
presented at the 1995 IEEE Int. Con$ Acoust., Speech, Signal Processing 
(ICASSP-95), May 1995. 

Constraints on the Cutoff Frequencies 
of Mth-Band Linear-Phase FIR Filters 

James M. Nohrden and Truong Q. Nguyen 

Abstract-In this correspondence, constraints are derived for the cut- 
off frequencies of linear-phase FIR -11th-band filters such that the filters 
have good passband and stopband characteristics, i.e. ones that very 
closely approximate an ordinary (non Mth-band) filter designed using 
some optimal method. Constraints on lowpass filters are first considered, 
and the results are extended to multiband filters. 

I. INTRODUCTION 

Mth-band filters have found numerous applications in recent 
years [2]-[4], [9], [ l l ] ,  [14], [15]. In signal processing, Mth-band 
filters are used in 1-D [I51 and 2-D [2] perfect reconstruction 
filter banks, nonuniform sampling [4], interpolation filters [ 141, 
and intersymbol interference rejection [ 1 11. Additionally, Mth-band 
filters have found applications in antenna array design [3]. .Ilth- 
band filters are commonly designed as lowpass filters with cut-off 
frequencies at K / J I .  This does not have to be the case. In fact, 
bandpass and multiband Ilth-band filters may be designed using the 
constrained set of cut-off frequencies derived in this paper. 

Fig. 1 shows the desired response of a lowpass filter where d!, and 
are the passband and stopband cutoff frequencies, respectively. 

h,, and h,  are the corresponding errors. The center frequency -i.(. of 
a lowpass filter is defined as 

Let H (  L ) denote the transfer function of an odd length linear-phase 
FIR filter 

and define a noncausal shifted version of f?( :) as H (  :) = z‘ H (  L 1, 
where L = (-Y - 1)/2.  H (  z )  is more suitable for the analytical work 
in this correspondence, whereas I?(: ) is actually implemented. 

Optimal design techniques exist to minimize the frequency domain 
error for linear-phase FIR filters. One such example is the Remez 
algorithm [5], which minimizes the maximum error and therefore has 
an equiripple frequency response. Another algonthm is the eigenfilter 
approach [13], which minimizes the least squares error. 

Let us define a good Mth-band filter as one that has approximately 
the same passband and stopband error characteristics as a non-Mth- 
band optimal filter with the same specifications. In other words, a 
good -21th-band filter is an Jlth-band filter that IS very nearly an 
optimal filter. 
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///////////////////////////////////////////////////////////////////////////////////////////////////

//                                                                                               //

//  FilePath:  Start.cpp                                                                         //

//  Author:    William Earl Jones                                                                //

//  Email:     wejc@wejc.com                                                                     //

//  Tag:       DEVELOP                                                                           //

//  TimeDate:  20240801_151824                                                                   //

//                                                                                               //

///////////////////////////////////////////////////////////////////////////////////////////////////

//                                                                                               //

//                           Copyright (c) 2024 William Earl Jones                               //

//                                                                                               //

//  Redistribution and use in source and binary forms, with or without modification, are         //

//  permitted provided that the following conditions are met:                                    //

//                                                                                               //

//    1. Redistributions of source code must retain the above copyright notice, this list of     //

//       conditions and the following disclaimer.                                                //

//                                                                                               //

//    2. Redistributions in binary form must reproduce the above copyright notice, this list of  //

//       conditions and the following disclaimer in the documentation and/or other materials     //

//       provided with the distribution.                                                         //

//                                                                                               //

//    3. Neither the name of the copyright holder nor the names of its contributors may be used  //

//       to endorse or promote products derived from this software without specific prior        //

//       written permission.                                                                     //

//                                                                                               //

//  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS  //

//  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF              //

//  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE   //

//  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,    //

//  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF           //

//  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)       //

//  HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR     //

//  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, //

//  EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                                           //

//                                                                                               //

///////////////////////////////////////////////////////////////////////////////////////////<wejc>//

#include  <fftw3.h>

#include  <iostream>

#include  <fstream>

#include  <chrono>

#include  "CLSLP.h"
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double  BlackmanHarrisWindow( const double K, const double N );

int  main( int /* NumArgs */, char** /* ArgList */ )

{

  const uint32_t           FftSize      = 1U << 12;

  const uint32_t           NumFiltCoefs = 501U;

  vector<complex<double>>  OutCoefs(NumFiltCoefs);

  std::ofstream  OutFiltCoefs("FilterCoefs.dat");

  std::ofstream  OutSpectral ("Spectral.dat");

  std::ofstream  OutPhase    ("Phase.dat");

  std::cout << ">>[FilterSynthesis: Example Filters]" << std::endl;

  {

    // Generate the filter

    CLSLP  Filt;

    // â\200\230AddSymmetricâ\200\231 is for Real-Valued Filter Coefficients    ([0,.5] mod 1.) Normalized Hz

    // â\200\230Addâ\200\231          is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz

    Filt.AddSymmetric( CLSLP::eLin_AbsErr, .0, .1, 0.00, 0.00, 1 );

    Filt.AddSymmetric( CLSLP::eExp_RelErr, .1, .4, 1e-4, 1.00, 1 );

    Filt.AddSymmetric( CLSLP::eLin_AbsErr, .4, .5, 0.00, 0.00, 1 );

    // Generate the filter coefficients

    const auto Clock_0 = chrono::high_resolution_clock::now();

    // Calculate the FIR Filter Coeffcients

    Filt.GenFilter( NumFiltCoefs, OutCoefs );

    const auto Clock_1 = chrono::high_resolution_clock::now();

    for( auto K=0U ; K < NumFiltCoefs ; ++K )

    {

      OutFiltCoefs << OutCoefs[K] << std::endl;

    }

    const double DeltaTime =

        double(chrono::duration_cast <chrono::microseconds> (Clock_1 - Clock_0).count());

    cout << "--FIR Filter Coefficient Generation: NumCoefs:"

         << NumFiltCoefs << "  [TotalSynthPeriod:"
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         << DeltaTime << " uS  PerCoefSynthPeriod:"

         << (DeltaTime/NumFiltCoefs) << " uS/Coef]"

         << std::endl;

    cout << "--Plot Generation" << std::endl;

    // Take DFT of these coefficents

    {

      fftw_complex  *In=nullptr, *Out=nullptr;

      fftw_plan     Plan=nullptr;

      In  = (fftw_complex*) fftw_malloc( sizeof(fftw_complex) * FftSize );

      Out = (fftw_complex*) fftw_malloc( sizeof(fftw_complex) * FftSize );

      // Plan the FFT

      Plan = fftw_plan_dft_1d( FftSize, In, Out, FFTW_FORWARD, FFTW_PATIENT );

      // Fill input data.

      //   No need to iterate on [0,FftSize).  Only (0,NumFiltCoefs) non-zero.

      for( auto K=0U ; K < NumFiltCoefs ; ++K )

      {

        const double  BHW = BlackmanHarrisWindow( K, NumFiltCoefs );

        In[K][0] = BHW * real(OutCoefs[K]);

        In[K][1] = BHW * imag(OutCoefs[K]);

      }

      for( auto K=NumFiltCoefs ; K < FftSize ; ++K )

      {

        In[K][0] = 0;

        In[K][1] = 0;

      }

      // Perform the FFT

      fftw_execute(Plan);

      for( int32_t  K = -(FftSize>>1) ; K < (signed) (FftSize>>1) ; ++K )

      {

        const double  A = ( (double) K / FftSize );

        double        Mag = 0;

        // Amplitude

        if( K >= 0 )

        {
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           Mag = 10.*log10(Out[K][0]*Out[K][0] + Out[K][1]*Out[K][1]);

        }

        else

        {

          assert( ( K + (signed) FftSize ) >= 0 );

          const uint32_t  K2 = K + FftSize;

          Mag = 10.*log10(Out[K2][0]*Out[K2][0] + Out[K2][1]*Out[K2][1]);

        }

        OutSpectral <<  A  << "  " << Mag << std::endl;

        // Phase Response

        double  Phase = 0;

        // Phase

        if( K >= 0 )

        {

           Phase = atan2( Out[K][1], Out[K][0] );

        }

        else

        {

          Phase = atan2( Out[K+FftSize-1U][1], Out[K+FftSize-1U][0] );

        }

        OutPhase <<  A  << "  " << Phase << std::endl;

      }

      // Clean Up

      fftw_destroy_plan(Plan);

      fftw_free(In);

      fftw_free(Out);

    }

  }

  std::cout << "<<[FilterSynthesis]" << std::endl;

  return  0;

}

double  BlackmanHarrisWindow( const double Num, const double Den )

{
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  const double  Mult = M_PI * Num / Den;

  const double  BHD =   0.35875

                      - 0.48829 * cos(2*Mult)

                      + 0.14128 * cos(4*Mult)

                      - 0.01168 * cos(6*Mult);

  return  BHD;

}
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///////////////////////////////////////////////////////////////////////////////////////////////////

//  FilePath:  CLSLP.h                                                                           //

//  Author:    William Earl Jones                                                                //

//  Email:     wejc@wejc.com                                                                     //

//  Tag:       CLSLP_RELEASE_20240914_180000                                                     //

//  TimeDate:  20240914_132446                                                                   //

///////////////////////////////////////////////////////////////////////////////////////////////////

//                           Copyright (c) 2024 William Earl Jones                               //

//                                                                                               //

//                            >> Standard BSD 3-Clause License <<                                //

//                                                                                               //

//  Redistribution and use in source and binary forms, with or without modification, are         //

//  permitted provided that the following conditions are met:                                    //

//                                                                                               //

//    1. Redistributions of source code must retain the above copyright notice, this list of     //

//       conditions and the following disclaimer.                                                //

//                                                                                               //

//    2. Redistributions in binary form must reproduce the above copyright notice, this list of  //

//       conditions and the following disclaimer in the documentation and/or other materials     //

//       provided with the distribution.                                                         //

//                                                                                               //

//    3. Neither the name of the copyright holder nor the names of its contributors may be used  //

//       to endorse or promote products derived from this software without specific prior        //

//       written permission.                                                                     //

//                                                                                               //

//  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS  //

//  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF              //

//  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE   //

//  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,    //

//  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF           //

//  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)       //

//  HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR     //

//  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, //

//  EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                                           //

///////////////////////////////////////////////////////////////////////////////////////////<wejc>//

#pragma once

#include  <complex>

#include  <vector>

#include  <sstream>

#include  <list>

#include  <iomanip>

#include  <cassert>
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#include  <cstdint>

#include  <gsl/gsl_sf.h>

using namespace std;

/**************************************************************************************************

  class  CLSLP

  The CLSLP C++ class is a tool that generates the coefficients for a linear-phase FIR

  filter filters. These filters are specified in line segments of frequency and amplitude

  (i.e. freq:[F0,F1], amp: [A0,A1]).  Two types of segments: linear and exponential.  Linear

  segmentâ\200\231s amplitude are specified by an equation of the form B*f+A where B and A are picked

  so that the line-segment end points, freq:[F0,F1] and amp: [A0,A1], are satisfied.  The other

  type of segment is the exponential segment defined by exp(B*f+A).  In this case the end points

  are specified by the user as freq:[F0,F1], amp: [loge(A0),loge(A1)].  Please read the PDF that

  accompanies this software for examples of use and mathematical background.  These algorithms

  were developed and published by Amin G. Jaffer and William E. Jones in the 1994 timeframe.

  The Diagnostics member function gives an example of each segment type and the code associated

  with FIR filter coefficient generation and evaluation.

**************************************************************************************************/

class  CLSLP

{

public:

  // Some constants

  static const double  TPI;

  static const double  PI2;

  // Segment types

  //  The interval is defined by [F0,F1] in frequency and [A0,A1] in amplitude for Linear Segments

  //  The interval is defined by [F0,F1] in frequency and [loge(A0),loge(A1)] in amplitude for Exponential Segments

  //  Note that frequencies are specified in the interval [0,1).  1/2 is PRF/2 at all sample rates.

  typedef enum  eSegType

  {

    eExp_RelErr,   // exp(B*f+A) segment, relative error

    eExp_AbsErr,   // exp(B*f+A) segment, absolute error

    eLin_RelErr,   // B*f+A segment, relative error

    eLin_AbsErr    // B*f+A segment, absolute error

  } SegType;
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private:

  // Exponential to a imaginary power

  static inline complex<double>  ExpI( const double ImagPart )

  {

    return  complex<double>( cos(ImagPart), sin(ImagPart) );

  }

  // The E1 exponential integral

  static inline complex<double>  ExpInt_1_I( const double ImagArg )

  {

    return  complex<double>( -gsl_sf_Ci(fabs(ImagArg)), -.5*M_PI+gsl_sf_Si(ImagArg) );

  }

  // The E2 exponential integral

  static inline complex<double>  ExpInt_2_I( const double Arg )

  {

    return  ( ExpI(-Arg) - MultI( Arg * ExpInt_1_I( Arg ) ) );

  }

  // Multiply by i

  static inline complex<double>  MultI( const complex<double> Arg )

  {

    return  complex<double>( -imag(Arg), real(Arg) );

  }

public:

  /**************************************************************************************************

    class  Seg

  **************************************************************************************************/

  // A filter segment definition

  class  Seg

  {

  public:

    // Linear Segments are: B*f+A.  The interval is defined by [F0,F1] in frequency and [A0,A1] in amplitude.

    // Exponential Segments are: exp(B*f+A).  The interval is defined by [F0,F1] in frequency and

    //                                        [loge(A0),loge(A1)] in amplitude.

    //  Note that frequencies are specified in the interval [0,1).  1/2 is PRF/2 at all sample rates.

    SegType  Type;

    double   F0, F1, A0, A1, W;
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    Seg( const SegType Type_Param,

         const double  F0_Param, const double  F1_Param,

         const double  A0_Param, const double  A1_Param,

         const double  Weight_Param=1. )

    {

      Type = Type_Param;

      F0   = F0_Param;

      F1   = F1_Param;

      A0   = A0_Param;

      A1   = A1_Param;

      W    = Weight_Param;

    }

    // This call modifies the Q matrix and R vectors to account for this segment.  It in turn calls

    //    specific generator functions based on the type of segment desired.

    //   Linear Segments are: B*f+A.  The interval is defined by [F0,F1] in frequency and [A0,A1] in amplitude.

    //   Exponential Segments are: exp(B*f+A).  The interval is defined by [F0,F1] in frequency and

    //                                          [loge(A0),loge(A1)] in amplitude.

    //  Note that frequencies are specified in the interval [0,1).  1/2 is PRF/2 at all sample rates.

    void   Gen_Segment( vector<complex<double>>&  Q,

                        vector<complex<double>>&  R,

                        const double              Weight=1. );

    // Display a segment definition

    string   Display( const double SampleRate=1 ) const

    {

      ostringstream  oS;

      oS << "SEG[";

      switch(Type)

      {

      case eExp_RelErr:

        oS << "Exp_Rel";

      break;

      case eExp_AbsErr:

        oS << "Exp_Abs";

      break;

      case eLin_RelErr:

        oS << "Lin_Rel";

      break;
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      case eLin_AbsErr:

        oS << "Abs_Lin";

      break;

      default:

        oS << "Error";

        assert(false);

      break;

      }

      oS  << "] "

          << setiosflags(ios::fixed) << setprecision(6) << setw(12) << (this->F0*SampleRate)

          << ": "

          << setiosflags(ios::fixed) << setprecision(8) << setw(12) << this->A0

          << "  <--->  "

          << setiosflags(ios::fixed) << setprecision(6) << setw(12) << (this->F1*SampleRate)

          << ": "

          << setiosflags(ios::fixed) << setprecision(8) << setw(12) << this->A1

          << "  W:"

          << setiosflags(ios::fixed) << setprecision(8) << setw(12) << this->W

          << "]";

      return  oS.str();

    }

  private:

    // exp(B*f+A) segment, relative error

    // -Note that frequencies are specified in the interval [0,1).  1/2 is PRF/2 at all sample rates.

    void    Gen_ExpRel_Segment( vector<std::complex<double>>&  Q,

                                vector<std::complex<double>>&  R,

                                const double                   Weight  );

    // exp(B*f+A) segment, relative error

    // -Note that frequencies are specified in the interval [0,1).  1/2 is PRF/2 at all sample rates.

    void    Gen_ExpAbs_Segment( vector<std::complex<double>>&  Q,

                                vector<std::complex<double>>&  R,

                                const double                   Weight  );

    // B*f+A segment, relative error

    // -Note that frequencies are specified in the interval [0,1).  1/2 is PRF/2 at all sample rates.

    void    Gen_LinRel_Segment( vector<std::complex<double>>&  Q,

                                vector<std::complex<double>>&  R,
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                                const double                   Weight  );

    // B*f+A segment, absolute error

    // -Note that frequencies are specified in the interval [0,1).  1/2 is PRF/2 at all sample rates.

    void    Gen_LinAbs_Segment( vector<std::complex<double>>&  Q,

                                vector<std::complex<double>>&  R,

                                const double                   Weight  );

  };

private:

  // The segments list

  list<Seg>  Segs;

protected:

  // Linear system solution of ’matrix(Q) vector(Coefs) = vector(R)’ via generalized Levenson’s recusion

  bool  Levenson( vector<complex<double>>&  pR,

                  vector<complex<double>>&  g,

                  vector<complex<double>>&  X  );

  complex<double>  InnerProdR(  const vector<complex<double>>&  InData1,

                       const uint32_t         Start,

                       const uint32_t         StopPlus1,

                       const vector<complex<double>>&  InData2    )  const;

  complex<double>  InnerProdC(  const vector<complex<double>>&  InData1,

                                const uint32_t                  Start,

                                const uint32_t                  StopPlus1,

                                const vector<complex<double>>&  InData2    )  const;

public:

  // Add a new filter segment

  //   Linear Segments are: B*f+A.  The interval is defined by [F0,F1] in frequency and [A0,A1] in amplitude.

  //   Exponential Segments are: exp(B*f+A).  The interval is defined by [F0,F1] in frequency and

  //                                          [loge(A0),loge(A1)] in amplitude.

  //  Note that frequencies are specified in the interval [0,1).  1/2 is SampleRate/2 here.

  void  Add( const SegType Type,

             const double  F0, const double  F1,

             const double  A0, const double  A1,

             const double  Weight=1. )

  {

    assert( F0 < F1 );
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    // Add: Design for a assymetric filter.  This type of filter will process the real and imaginary channels

    //      with different coefficients.  [To generate a Symmetric, real-valued, filter, specifiy desired

    //      filter responses in a conjugate-symmetric pattern about SampleRate/2.]

    // ===  by the design.

     Segs.push_back( Seg( Type, F0, F1, A0, A1, Weight ) );

  }

  // Add a new filter segment symmetric between the positive andnegative frequencies

  //   Linear Segments are: B*f+A.  The interval is defined by [F0,F1] in frequency and [A0,A1] in amplitude.

  //   Exponential Segments are: exp(B*f+A).  The interval is defined by [F0,F1] in frequency and

  //                                          [loge(A0),loge(A1)] in amplitude.

  //  Note that frequencies are specified in the interval [0,1).  1/2 is SampleRate/2 at all sample rates.

  void  AddSymmetric( const SegType  Type,

                      const double   F0, const double  F1,

                      const double   A0, const double  A1,

                      const double   Weight=1. )

  {

    assert( F0 <= .5 );

    assert( F0 <= .5 );

    assert( F0 <  F1 );

    // AddSymmetric: Filter response is conjugate-symmetric about PRF/2 and linear-phase response is assumed

    // ============  by the fiter design algorithm.

    Segs.push_back( Seg( Type,    F0,    F1, A0, A1, Weight ) );

    Segs.push_back( Seg( Type, 1.-F1, 1.-F0, A1, A0, Weight ) );

  }

  // Generate the filter coefficients out into Out.  This involves the solution of the linear system

  //    ’matrix(Q) vector(Coefs) = vector(R)’.

  bool  GenFilter( const unsigned int FilterLen, vector<complex<double>>& Out );

  // Get the number of filter segments

  unsigned int  GetNumSegments(void) const

  {

    return  Segs.size();

  }

  // Clear all filter segments

  void  Clear(void)

  {

    Segs.clear();

  }
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  // Get segment list reference

  list<Seg>&  GetSegs(void)

  {

    return  this->Segs;

  }

};
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///////////////////////////////////////////////////////////////////////////////////////////////////

//  FilePath:  CLSLP.cpp                                                                         //

//  Author:    William Earl Jones                                                                //

//  Email:     wejc@wejc.com                                                                     //

//  Tag:       CLSLP_RELEASE_20240914_180000                                                     //

//  TimeDate:  20240914_132446                                                                   //

///////////////////////////////////////////////////////////////////////////////////////////////////

//                           Copyright (c) 2024 William Earl Jones                               //

//                                                                                               //

//                            >> Standard BSD 3-Clause License <<                                //

//                                                                                               //

//  Redistribution and use in source and binary forms, with or without modification, are         //

//  permitted provided that the following conditions are met:                                    //

//                                                                                               //

//    1. Redistributions of source code must retain the above copyright notice, this list of     //

//       conditions and the following disclaimer.                                                //

//                                                                                               //

//    2. Redistributions in binary form must reproduce the above copyright notice, this list of  //

//       conditions and the following disclaimer in the documentation and/or other materials     //

//       provided with the distribution.                                                         //

//                                                                                               //

//    3. Neither the name of the copyright holder nor the names of its contributors may be used  //

//       to endorse or promote products derived from this software without specific prior        //

//       written permission.                                                                     //

//                                                                                               //

//  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS  //

//  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF              //

//  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE   //

//  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,    //

//  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF           //

//  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)       //

//  HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR     //

//  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, //

//  EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                                           //

///////////////////////////////////////////////////////////////////////////////////////////<wejc>//

#include  <cassert>

#include  <cmath>

#include  <fstream>

#include  <iostream>

#include  "CLSLP.h"

using namespace std;
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const double  CLSLP::TPI = 2. * M_PI;

const double  CLSLP::PI2 = M_PI * M_PI;

// Generate the filter coefficients into Out

bool  CLSLP::GenFilter( const unsigned int        FilterLen,

                        vector<complex<double>>&  Out  )

{

  vector<complex<double>>  Q(FilterLen);

  vector<complex<double>>  R(FilterLen);

  // Set output size

  Out.resize(FilterLen);

  // Is zero length

  if( FilterLen == 0 )  return false;

  // Over The Frequency Segments

  auto  I = Segs.begin();

  for(  ; I != Segs.end() ; ++I )

  {

    I->Gen_Segment( Q, R );

  }

  // Perform Levenson To Solve The System

  const bool  Solution = Levenson( Q, R, Out );

  return  Solution;

}

// Fill the Q-matrix and the R-vector for linear system solution to filter coefficients

void  CLSLP::Seg::Gen_Segment( vector<complex<double>>&  Q,

                               vector<complex<double>>&  R,

                               const double              Weight  )

{

  // Pick the frequency interval segment (line) type

  switch(this->Type)

  {

    case eExp_RelErr:

      this->Gen_ExpRel_Segment( Q, R, Weight );

    break;
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    case eExp_AbsErr:

      this->Gen_ExpAbs_Segment( Q, R, Weight );

    break;

    case eLin_RelErr:

      this->Gen_LinRel_Segment( Q, R, Weight );

    break;

    case eLin_AbsErr:

      this->Gen_LinAbs_Segment( Q, R, Weight );

    break;

    default:

      assert(false);   // Set exception in DEBUG mode

    break;

  }

}

// exp(B*f+A) segment, relative error

void  CLSLP::Seg::Gen_ExpRel_Segment( vector<complex<double>>&  Q,

                                      vector<complex<double>>&  R,

                                      const double              Weight  )

{

  const double     Min_Segment = 1e-32;   // Need > 0 here

  const double     MidPoint    = .5 * ( Q.size() - 1 );

  double           lA1         = 0;

  double           lA0         = 0;

  complex<double>  Ret { 0 };

  if( this->A1 >= Min_Segment )

  {

    lA1 = log(this->A1);

  }

  else

  {

    lA1 = log(Min_Segment);

  }

  if( this->A0 >= Min_Segment )

  {

    lA0 = log(this->A0);

  }
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  else

  {

    lA0 = log(Min_Segment);

  }

  // Put in standard form

  const double  sB  = (lA1  - lA0) / (this->F1 - this->F0);

  const double  sA  = lA0 - sB  * this->F0;

  // Form The Q Toeplitz Matrix (Vector Here)

  for( auto L=0U ; L < Q.size() ; ++L )

  {

    if( !((L==0) && (sB == 0)) )

    {

      Ret   = ExpI(TPI*L*this->F1) * exp(-2.*(sB*this->F1+sA));

      Ret  -= ExpI(TPI*L*this->F0) * exp(-2.*(sB*this->F0+sA));

      Q[L] +=  Weight * Ret / complex<double>( -2.*sB, TPI*L );

    }

    else

    {

      Q[L] +=  Weight * exp(-2.*sA) * (this->F1 - this->F0);

    }

  }

  // Form The R Vector

  for( auto L=0U ; L < R.size() ; ++L )

  {

    if( !((L==MidPoint) && (sB == 0)) )

    {

      Ret  = ExpI(-TPI*this->F1*(L-MidPoint)) * exp(-(sB*this->F1+sA));

      Ret -= ExpI(-TPI*this->F0*(L-MidPoint)) * exp(-(sB*this->F0+sA));

      R[R.size()-1-L] +=  Weight * Ret / complex<double>( -sB, -TPI*(L-MidPoint));

    }

    else

    {

      R[R.size()-1-L] +=  Weight * exp(sA) * (this->F1 - this->F0);

    }

  }

}

// exp(B*f+A) segment, absolute error
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void  CLSLP::Seg::Gen_ExpAbs_Segment( vector<complex<double>>&  Q,

                                      vector<complex<double>>&  R,

                                      const double              Weight  )

{

  const double     Min_Segment = 1e-32;   // Need > 0 here

  const double     MidPoint    = .5 * ( Q.size() - 1 );

  double           lA1         = 0;

  double           lA0         = 0;

  complex<double>  Ret { 0 };

  if( this->A1 >= Min_Segment )

  {

    lA1 = log(this->A1);

  }

  else

  {

    lA1 = log(Min_Segment);

  }

  if( this->A0 >= Min_Segment )

  {

    lA0 = log(this->A0);

  }

  else

  {

    lA0 = log(Min_Segment);

  }

  // Put in standard form

  const double  sB  = (lA1  - lA0) / (this->F1 - this->F0);

  const double  sA  = lA0 - sB  * this->F0;

  // Form The Q Toeplitz Matrix (Vector Here)

  for( auto L=0U ; L < Q.size() ; ++L )

  {

    // See if we can assume a zero denominator

    if( L != 0 )

    { // L != 0

      Ret  = -ExpI( TPI*L*this->F1 );

      Ret -= -ExpI( TPI*L*this->F0 );

      Q[L]  +=  Weight * MultI( Ret ) / (TPI*L);

    }

    else
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    { // L == 0

      Q[L]  +=  Weight * ( this->F1 - this->F0 );

    }

  }

  // Form The R Vector

  for( auto L=0U ; L < R.size() ; ++L )

  {

    if( !((L == MidPoint) && (fabs(sB) <= Min_Segment)) )

    { // Not midpoint

      Ret  =  ExpI(-TPI*this->F1*(L-MidPoint)) * exp(sB*this->F1+sA);

      Ret -=  ExpI(-TPI*this->F0*(L-MidPoint)) * exp(sB*this->F0+sA);

      R[R.size()-1-L] += Weight * Ret / complex<double>( sB, -TPI*(L-MidPoint) );

    }

    else

    { // Midpoint

      R[R.size()-1-L] += Weight * ( this->F1 - this->F0 ) * exp(sA);

    }

  }

}

// B*f+A segment, relative error

void  CLSLP::Seg::Gen_LinRel_Segment( vector<complex<double>>&  Q,

                                      vector<complex<double>>&  R,

                                      const double              Weight  )

{

  const double     MidPoint = .5 * ( Q.size() - 1 );

  double           Phase0 = 0;

  double           Phase1 = 0;

  complex<double>  Ret { 0 };

  // Put in standard form

  const double  sB = (this->A1  - this->A0) / (this->F1 - this->F0);

  const double  sA = this->A0 - sB  * this->F0;

  // Form The Q Toeplitz Matrix (Vector Here)

  for( auto L=0U ; L < Q.size() ; ++L )

  {

    // Handle special cases

    if( L != 0 )

    { // L != 0

      if( sB != 0 )
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      { // B != 0  &&  L != 0

        Phase1 = -TPI*L*(sB*this->F1+sA) / sB;

        Phase0 = -TPI*L*(sB*this->F0+sA) / sB;

        Ret    =  -ExpInt_2_I(Phase1) / (sB*(sB*this->F1+sA));

        Ret   -=  -ExpInt_2_I(Phase0) / (sB*(sB*this->F0+sA));

        Q[L]  +=  Weight * Ret * ExpI(-TPI*sA*L/sB);

      }

      else

      { // B == 0  &&  L != 0

        Ret   =  -MultI( ExpI(TPI*L*this->F1) );

        Ret  -=  -MultI( ExpI(TPI*L*this->F0) );

        Q[L] +=  Weight * Ret / (TPI*sA*sA*L);

      }

    }

    else

    { // L == 0  &&  B != 0

      if( sB != 0 )

      { // B!= 0

        Ret   =  -1. / (sB*(sB*this->F1+sA));

        Ret  -=  -1. / (sB*(sB*this->F0+sA));

        Q[L] +=  Weight * Ret;

      }

      else

      { // L == 0  &&  B == 0

        Q[L] +=  Weight * (this->F1 - this->F0) / (sA*sA);

      }

    }

  }

  // Form The R Vector (Vector Here)

  for( auto L=0U ; L < R.size() ; ++L )

  {

    // Handle special cases

    if( L != MidPoint )

    { // L != MidPoint

      if( sB != 0 )

      { // B != 0  &&  L != MidPoint

        Phase1 = TPI * (sB*this->F1+sA)*(L-MidPoint) / sB;

        Phase0 = TPI * (sB*this->F0+sA)*(L-MidPoint) / sB;
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        Ret    =  -ExpInt_1_I(Phase1);

        Ret   -=  -ExpInt_1_I(Phase0);

        R[R.size()-1-L]  +=  Weight * Ret * ExpI(TPI*sA*(L-MidPoint)/sB) / sB;

      }

      else

      { // B == 0  &&  L != MidPoint

        Ret    =  MultI( ExpI(-TPI*this->F1*(L-MidPoint)));

        Ret   -=  MultI( ExpI(-TPI*this->F0*(L-MidPoint)));

        R[R.size()-1-L]  +=  Weight * Ret / (TPI*sA*(L-MidPoint));

      }

    }

    else

    { // L == MidPoint  &&  B != 0

      if( sB != 0 )

      { // B != 0

        Ret  =  log(sB*this->F1+sA);

        Ret -=  log(sB*this->F0+sA);

        R[R.size()-1-L]  +=  Weight * Ret / sB;

      }

      else

      { // L == MidPoint  &&  B == 0

        R[R.size()-1-L]  +=  Weight * (this->F1 - this->F0) / sA;

      }

    }

  }

}

// B*f+A segment, absolute error

void  CLSLP::Seg::Gen_LinAbs_Segment( vector<complex<double>>&  Q,

                                      vector<complex<double>>&  R,

                                      const double              Weight  )

{

  const double  MinQR_Denom = 1e-6;

  const double  MidPoint = .5 * ( Q.size() - 1 );

        double  Phase0 = 0;

        double  Phase1 = 0;

        double  Denom  = 0;

  // Put in standard form

  const double  sB  = (this->A1 - this->A0) / (this->F1 - this->F0);
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  const double  sA  = this->A0 - sB * this->F0;

  // Form The Q Toeplitz Matrix (Vector Here)

  for( auto L=0U ; L < Q.size() ; ++L )

  {

    Denom = -TPI * L;

    // See if we can assume a zero denominator

    if( abs(Denom) >= MinQR_Denom )

    { // Denominator not zero

      Phase0 = TPI * this->F0 * L;

      Phase1 = TPI * this->F1 * L;

      // Update Q

      Q[L] += Weight * ( complex<double>( cos(Phase1), sin(Phase1) ) -

                         complex<double>( cos(Phase0), sin(Phase0) ) ) /

                         complex<double>( 0.,  -Denom  );

    }

    else

    { // Denominator zero

      // Update Q

      Q[L] += Weight * (this->F1 - this->F0);

    }

  }

  // Form The R Vector

  for( auto L=0U ; L < R.size() ; ++L )

  {

    Denom = 4. * PI2 * pow( (double) L - MidPoint, 2 );

    if( abs(Denom) >= MinQR_Denom )

    { // Denominator not zero

      // Update R

      const complex<double>  A1( 0.,  L*TPI*(sB*this->F1 + sA) );

      const complex<double>  A0( 0.,  L*TPI*(sB*this->F0 + sA) );

      const complex<double>  B1( sB, -TPI*MidPoint*(sB*this->F1 + sA) );

      const complex<double>  B0( sB, -TPI*MidPoint*(sB*this->F0 + sA) );

      Phase0 = -TPI * F0 * ( L - MidPoint );

      Phase1 = -TPI * F1 * ( L - MidPoint );

      const complex<double>  X= ((A1 + B1) * complex<double>( cos(Phase1), sin(Phase1) )) -

                                  ((A0 + B0) * complex<double>( cos(Phase0), sin(Phase0) )) ;
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      // Update R

      R[R.size()-1-L] += Weight * X / Denom;

   }

    else

    { // Denominator zero

      // Update R

      R[R.size()-1-L] += Weight * ( ( .5*sB*this->F1*this->F1 + sA*this->F1 ) -

                                    ( .5*sB*this->F0*this->F0 + sA*this->F0 ) );

   }

  }

}

// Must Have At Least 2 Dimensions!!!!!

bool  CLSLP::Levenson( vector<complex<double>>& pR,

                       vector<complex<double>>& g,

                       vector<complex<double>>& X   )

{

  complex<double>           Sum, Delta, Alpha, V;

  vector<complex<double>>   R(X.size());

  vector<complex<double>>   Y(X.size());

  vector<complex<double>>   Z(X.size());

  const double              MinDivisor = 1e-12;

  if(pR.size() < 2)   return  false;

  if(g.size() < 2)    return  false;

  if(X.size() < 2)    return  false;

  if( norm(pR[0]) < (MinDivisor*MinDivisor) )   return  false;

  X[0] = g[0]/pR[0];

  Y[0] = -pR[1]/pR[0];

  R[0] = pR[1];

  // Over The Dimensions

  for( auto K=1U ; K < X.size() ; ++K )

  {

    // Calculate Delta

    Sum = this->InnerProdC(R,0,K,Y);

    Delta = Sum + pR[0];

    if( norm(Delta) < (MinDivisor*MinDivisor)  )  return  false;

    // Calculate V

    Sum = this->InnerProdR(R,0,K,X);
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    V = (g[K]-Sum)/Delta;

    // Update the Z and U vectors

    for( auto L=0U ; L<K ; L++ )

    {

      X[L] += V * conj(Y[K-1-L]);

    }

    X[K] = V;

    if( (K+1) < X.size() )

    {

      // Calculate Alpha

      Sum = this->InnerProdR(R,0,K,Y);

      Alpha = -(pR[K+1]+Sum)/Delta;

      // Update the Z and U vectors

      for( auto L=0U ; L<K ; ++L )

      {

        Z[L] = Y[L] + Alpha * conj(Y[K-1-L]);

      }

      for( auto L=0U ; L<K ; ++L )

      {

        Y[L] = Z[L];

      }

      Y[K] = Alpha;

      R[K] = pR[K+1];

    }

  }

  // Good return

  return  true;

}

// Linear system solution via Levenson’s recursion

complex<double>  CLSLP::InnerProdC( const vector<complex<double>>&  InData1,

                                    const uint32_t                  Start,

                                    const uint32_t                  StopPlus1,

                                    const vector<complex<double>>&  InData2    ) const

{

 complex<double>  R = 0;
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 for( uint32_t M=Start ; M < StopPlus1 ; ++M )

 {

   R += InData1[M] * conj(InData2[M]);

 }

 return  R;

}

complex<double>  CLSLP::InnerProdR( const vector<complex<double>>&  InData1,

                                    const uint32_t                  Start,

                                    const uint32_t                  StopPlus1,

                                    const vector<complex<double>>&  InData2    ) const

{

 complex<double>  R = 0;

 for( uint32_t M=Start ; M < StopPlus1 ; ++M )

 {

   R += InData1[M] * InData2[StopPlus1-1U-M];

 }

 return  R;

}


