
Constrained Least-Squares Linear-Phase FIR
Filter Synthesis (CLSLP)

September 17, 2024

William Earl Jones

http://www.wejc.com || wejc@wejc.com

Last Updated 09/17/24 at 19:14

1. Introduction
This document describes use of the Constrained Least-Squares Linear-Phase FIR Filter Synthesis Algorithm
CLSLP as described in reference [1]. The acronym CLSLP is not used in the technical paper and is only used
as a local convenience and as a name for the software package. The acronym LPFIR is used here as an
abbreviation for Linear-Phase Finite Impulse Response filter.

2. Linear-Phase FIR (LPFIR) Filters
A Linear-Phase FIR filter (LPFIR) is a special form of FIR filter that preserves the timing relationship between
signals of different frequencies. Non-Linear phase FIR filters have different phase responses at different
frequencies and these errors can accumulate as frequency-dependent time delays in multilayered signal-
processing schemes. The linear-phase constraint guarantees that the time delay of different frequency
components is identical. It’s also easy to show that cascaded linear-phase FIR filters are themselves linear
phase. This means complicated multi-layer filtering schemes can be employed without this cumulative phase
(timing) degradation.

The CLSLP filter synthesis algorithm is computationally efficient and fast even on a standard desktop PC. For
example, the synthesis of the filter in Section 3 below, a 501-coefficient real-valued filter, takes roughly 1.6 to 3
ms in total, or about 3 µs per FIR filter coefficient.

3. Using the CLSLP Algorithm
This Section provides illustrations of the practical use and characteristics of the Constrained Least-Squares
Linear-Phase FIR Filter (CLSLP) synthesis algorithm which was presumably first described in reference [1].
CLSLP filters are minimum weighted square-error and possess linear-phase due to their conjugate-symmetric
coefficient form. CLSLP filters are generated without a Fourier Transform and the fidelity of the synthesized
filter coefficients is quite good (e.g. -150 dB stop-band in Figure 1 below). The CLSLP algorithm is also
computationally efficient and so is ideal for adaptive real-time filtering applications. For example, the 501-
coefficient linear-phase FIR filter below was synthesized with double-precision floating-point coefficients in

1

http://www.wejc.com/
mailto:wejc@wejc.com

1.69 ms on a standard desktop PC. The center filter segment is an exponential-line segment type, from .1 an .4
Normalized Hz, with amplitudes of -80 dB and 0 dB at the left and right filter segment edges respectively. The
other frequency segments are set to zero. Note, exponential-filter segments appear as straight lines on dB plots.

3.1. Filter Frequency-Interval Definitions
CLSLP filter coefficients are given in Equations (32) and (33) in reference [1]. Breaking frequency up into sub-
bands is intuitive as (32) and (33) are integrals over frequency. This easily accommodates unspecified
frequency bands as well. By judiciously choosing the amplitude response functions used for these intervals,
filter synthesis can be achieved quickly resulting in high-precision LPFIR filter coefficients.

3.1.1. Frequency-Interval Types

There are currently four types of frequency intervals defined. These intervals are either linear or exponential.
An exponential interval appears as a straight line on a dB plot while a linear interval appears as a straight line
on a linear plot. Additionally these segments employ either absolute or relative weighting.

Absolute Weighting Type Normal square-error

Relative Weighting Type Normal square-error divided by the specified signal amplitude. This mode
artificially boosts the fit quality of lower amplitude frequency intervals. Signal
amplitudes of zero cannot be used as logarithms are employed. Use a small value
instead (e.g. 1e-8).

This is the C++ data structure specification of frequency interval types

2

Figure 3.1: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [EXP,ABS].

Due to the open form of this algorithm, additional frequency-interval types can be added as needed. These four
frequency-interval types are computationally efficient and have, so far anyway, sufficed in practical filter-
design problems.

3.1.2. Segment Parameters

Five numeric values are needed for any of the four segment types mentioned in Section 3.1.1 above. Namely
X[0], X[1], Y[0], Y[1], and the weighting factor which is discussed in the next section. Here X[0] and X[1] are
interval start and stop frequencies given in Normalized Hz. The filter amplitudes at the frequency-interval
edges are specified as Y[0] and Y[1] (not in dB). The frequency interval type is Linear/Absolute error
LS_FIR_Filter::eLin_AbsErr.

3.1.3. Segment Weights

Segment weights are provided so the filter designer can change the fit quality filter sections. A value of 1 is
considered normal weighting, a value of 0 means the fit error for that section is completely ignored, and a
segment weight of 2 doubles the fit error. Increasing the segment weight should improve the fit in that filter
segment. For example, the middle filter segment of the filter illustrated in the previous section would be
specified as X[0]=.1, X[1]=.4, Y[0]=1e-4, Y[1]=1, Type=LS_FIR_Filter::eLin_AbsErr, Weight=1 .

3.2. Using CLSLP Software
This section illustrates installing, building, then running the CLSLP filter synthesis application.

3.3. Installation
It is fairly easy to install CLSLP and synthesize filters on any platform or context. There is no installation
procedure per se. CLSLP is released here as C++20 source code and CMAKE build files. Additionally Linux
command files CLEAN and BUILD_AND_RUN provide illustration of the proper command syntax. This
software should build on most modern operating systems and CPU architectures. Though Linux has been used
in this software’s design, MS Windows, Mac OS, and many other operating systems can be used as both the
build and run environment. Build and run environments can be set separately via compiler switches in modern
C++ compilers so heterogeneous computer operating systems and architectures can be integrated easily.

Executing BUILD_AND_RUN should do everything in one step. The CLEAN command isn’t really necessary
unless CMAKE gets confused. CLEAN empties the build directory completely.

3

// Segment types
// [F0,F1] in frequency and [A0,A1] in amplitude for Linear Segments
// [F0,F1] in frequency and [loge(A0),loge(A1)] in amplitude for Exponential Segments
// Note that frequencies are specified in the interval [0,1) Normalized Hz.
typedef enum eSegType
{
 eExp_RelErr, // exp(B*f+A) segment, relative error
 eExp_AbsErr, // exp(B*f+A) segment, absolute error
 eLin_RelErr, // B*f+A segment, relative error
 eLin_AbsErr // B*f+A segment, absolute error
} LS_FIR_Filter;

./CLEAN # Not really necessary --- clears subdir build/

./BUILD_AND_RUN # Build then Run the software

3.4. CLSLP Software Distribution
CLSLP is distributed in C++ source code form. CMAKE build files are included as well as Linux script files to
illustrate proper use.

3.4.1. CLSLP Software Distribution

The standard CLSLP release consists of, at least, the files listed at the end of this section. The Linux GSL
special function library is necessary for CLSLP LPFIR filter synthesis. FFTW and GNUPLOT are used for plot
generation though neither is needed for coefficient synthesis itself.

A CLSLP release will contain at least the files specified below

• Start.cpp
• CLSLP.h
• CLSLP.cpp
• AlignedMemAlloc.h
• CLEAN
• BUILD_AND_RUN
• GENERATE_PLOTS

Header file AlignedMemAlloc.h helps provide functionality for SSE and AVX SIMD vector allocation (faster
execution). This module is also the C++ main program entry-point for the software in these tests. As a local
convention we use start as part of the main’s filename to identify it. Filename like Start_x.cpp are used for C++
main files in this document. For example of use see Section 4.1.2 below.

3.4.2. Building Application with CMAKE

Execute the following commands in the source code where you want to store your build files. The sub-
directory build is commonly used.

./CLEAN # Cleans the build directory (optional)

./BUILD_AND_RUN # Builds (CMAKE) source code and execute program

./GENERATE_PLOTS # Generate GNUPLOT plots from data files just created (optional)

3.4.3. Spectral Plots

The CMAKE current directory should now contain two new PNG graphics files: the Amplitude and Phase
Response graphs.

3.5. CLSLP Filter Synthesis Applications
The only module we need to write is the start-file, or file Start_x.cpp. This is the C++ main that calls the
CLSLP filter synthesis software. GenFilter is then called to synthesize the filter coefficients. The code
fragment below synthesizes an LPFIR Filter with 501 real-valued double-precision coefficients into output
vector OutCoefs. This vector is allocated on AVX (SIMD) memory boundaries. On Linux systems, -O3
x5pT=rAu(optimized compilation), is sufficient for basic SIMD support on CPUs that support it. Intel and
AMD PC CPUs normally do support it.

4

3.6. Building Filter Synthesis Software
Next we compile and link the software in the previous section into an executable. We are using CMAKE and
the GNU C++ compiler build tools. The following BASH script performs the CMAKE build.

A listing of the CMAKE control file CMakeLists.txt is presented below as a convenience.

The following sequence of commands will perform the C++ build, then execute the synthesized code. The filter
coefficients are stored in FilterCoef.dat in ASCII form.

5

./CLEAN # Not necessary though cleans the CMAKE build file

./BUILD_AND_RUN # Build and Run the CLSLP software

./GENERATE_PLOTS # Generates GNUPLOT plot files (Amplitude and Phase)

#! /bin/bash

Generate the CMAKE files
make --fresh -S . -B build -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_VERBOSE_MAKEFILE=OFF

Compile the C++ sources
cmake --build build

cmake_minimum_required(VERSION 3.10)

specify the C++ standard
set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_FLAGS_RELEASE "-O3 -Wall -Wextra")
set(CMAKE_CXX_FLAGS_DEBUG "-g -Wall -Wextra")
set(CMAKE_VERBOSE_MAKEFILE ON)

Set some basic project attributes
project (CLSLP
 VERSION 1.00
 DESCRIPTION "CLSLP Filter Synthesis")

file(GLOB SRC_FILES ${PROJECT_SOURCE_DIR}/*.cpp)

This project will output an executable file
add_executable(${PROJECT_NAME} ${SRC_FILES})

Include the configuration header in the build
target_include_directories(${PROJECT_NAME} PUBLIC "${PROJECT_BINARY_DIR}")

Math includes
target_link_libraries(${PROJECT_NAME} PUBLIC "gsl")
target_link_libraries(${PROJECT_NAME} PUBLIC "gslcblas")

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 501;
CLSLP Filt;
vector<complex<double>> OutCoefs(NumFiltCoefs); // Real-valued Coefs stored in Complex

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1);
Filt.AddSymmetric(LS_FIR_Filter::eExp_RelErr, .1, .4, 1e-4, 1.00, 1);
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter(NumFiltCoefs, OutCoefs);

4. FIR Filter Synthesis Examples
The functionality and use of the Constrained Least-Squares Linear-Phase CLSLP FIR Filter Synthesis algorithm
is described via a series of simple examples in the following sections. These sections assume you have the
software from the CLSLP Software Distribution described in Section 3.4.1 above.

4.1. Sloped-Bandpass Filter Example
We construct a linear-phase real-valued FIR filter to pass .1 to .4 Normalized Hz and null the other frequencies.
The passband starts at .1 Hz with a -80 dB response. It rises either linearly or exponentially, depending on the
type of test performed, to .4 Hz with a response of 0 dB. We use a 501-tap linear-phase real-valued FIR Filter
and the CLSLP algorithm to perform the filter synthesis. The amplitude spectra are calculated by performing a
Discrete Fourier Transform (DFT) on a zero-padded vector of filter coefficients.

All linear-phase FIR filters have conjugate-symmetric filter coefficients by the argument given in reference [1].
Since this is a real-valued filter, conjugate-symmetric corresponds to symmetric filter coefficients here.

4.1.1. Exponential/Absolute Weighted-Error Filter Segments

A linear-phase real-valued FIR filter with 501-coefficients is synthesized using the CLSLP algorithm. We are
testing the exponential/absolute mode here. The synthesis takes 1572 µs or 3.14 µs per coefficient. The filter
amplitude response is given in the graph below. The exponential filter segment appears as a straight line in the
dB amplitude response below.

Figure 4.1: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [EXP,ABS].

FIR filter synthesis is performed via the C++ code fragment below. The AddSymmetric function is used for
real-valued filters [0-.5) and Add for complex-valued filters [0-1). AddSymmetric adds filter constraints that are
conjugate-symmetric in frequency so as to guarantee real-valued filter coefficients. These coefficients are then
written to the OutCoefs vector.

6

4.1.2. Exponential/Relative Weighted-Error Frequency Intervals

A linear-phase real-valued FIR filter with 501-coefficients is synthesized using the CLSLP algorithm. We are
testing the exponential/relative mode. This synthesis takes about 1556 µs or 3.11 µs per filter coefficient. The
filter’s amplitude response is given in Figure 4.2 below. The exponential filter interval appears as a sloped-line
in the dB amplitude response. The little response peak just below .1 Hz can be reduced by adding a small
triangular filter design section to reduce the abrupt amplitude transition. The filter response will improve as a
result.

The code fragment below is the C++ main program used in this example.

7

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 501;
CLSLP Filt;
vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1);
Filt.AddSymmetric(LS_FIR_Filter::eExp_AbsErr, .1, .4, 1e-4, 1.00, 1);
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter(NumFiltCoefs, OutCoefs);

Figure 4.2: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [EXP,REL].

4.1.3. Linear/Absolute Weighted-Error Filter Segments

A linear-phase real-valued FIR filter with 501-coefficients is synthesized using the CLSLP algorithm. We are
testing the Linear/Absolute mode. This 501-coefficient filter can be generated in 3517 µs or 7.02 µs per
coefficient. The linear slope appears as a logarithmic curve.

The code fragment below is the C++ main program used in this example.

8

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 501;
CLSLP Filt;
vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1);
Filt.AddSymmetric(LS_FIR_Filter::eExp_RelErr, .1, .4, 1e-4, 1.00, 1);
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter(NumFiltCoefs, OutCoefs);

Figure 4.3: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [LIN,ABS].

4.1.4. Linear/Relative Weighted-Error Filter Segments

A linear-phase FIR (LPFIR) filter with 501-coefficients is synthesized using the CLSLP algorithm. We are
testing the linear/relative mode. The synthesis takes about 1635 µs or 3.26 µs per coefficient. The CLSLP
filter amplitude response is given in Figure 4.4 below. The linear filter segment appears as a logarithmic curve
in the amplitude response plot below. There is a small peak just below .1 Hz though we are close to making the
-80 dB response. Adding a small triangular filter design section to reduce the abrupt amplitude transition. The
filter response will improve substantially as a result. This 501-coefficient filter can be generated in 1635 µs or
3.26 µs per coefficient. The linear slope appears as a logarithmic curve.

The code fragment below is the C++ main program used in this example.

9

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 501;
LS_FIR_Filter Filt;
vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1);
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .1, .4, 1e-4, 1.00, 1);
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter(NumFiltCoefs, OutCoefs);

Figure 4.4: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [LIN,REL].

4.2. Complex-Coefficient Linear-Phase FIR (LPFIR) Filters
The filter response of a real-valued LPFIR filter possess conjugate-symmetry about 0 Hz. Therefore it suffices
to specify the the amplitude response only from 0 to .5 Normalized Hz and infer the rest from the symmetry.
FIR filters with complex-valued coefficients do not have conjugate symmetric filter coefficients. Therefore
plots of complex-coefficient FIR filters are usually plotted from -.5 to .5 Normalized Hz.

4.2.1. Example Filter 5

A linear-phase FIR filter with 1001 complex-valued coefficients is synthesized using the CLSLP algorithm. We
are testing the complex-coefficient mode so amplitude plots will be displayed from -.5 to .5 Normalized Hz.

This filter synthesis takes 5544 µs or 5.54 µs per coefficient on a standard PC. The resultant CLSLP filter’s
amplitude response is given in Figure 3.1 above.

10

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 501;
LS_FIR_Filter Filt;
vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1);
Filt.AddSymmetric(LS_FIR_Filter::eLin_RelErr, .1, .4, 1e-4, 1.00, 1);
Filt.AddSymmetric(LS_FIR_Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter(NumFiltCoefs, OutCoefs);

// The C++ code segment that generates this 1001-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 1001;
LS_FIR_Filter Filt;
vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.Add(LS_FIR_Filter::eLin_AbsErr, .0, .05, 0.00, 0.00, 1);
Filt.Add(LS_FIR_Filter::eExp_AbsErr, .05, .2, 1e-4, 1.00, 1);
Filt.Add(LS_FIR_Filter::eExp_AbsErr, .2, .5, 1e-4, 1.00, 1);
Filt.Add(LS_FIR_Filter::eExp_AbsErr, .5, .9, 1.00, 1e-4, 1);
Filt.Add(LS_FIR_Filter::eLin_AbsErr, .9, 1.0, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenFilter(NumFiltCoefs, OutCoefs);

Figure 4.5: Amplitude: Ex5 1001-Coefficient Complex-Value CLSLP LPFIR [EXP,ABS].

4.2.2. Example Filter 6

This filter synthesis takes 23388 µs or 11.4255 µs per coefficient on a standard PC. The resultant CLSLP
filter’s amplitude response is given in Figure 3.1 above.

11

5. Web Resources
See website http://www.wejc.com for CLSLP software information and downloads. Look for the acronym
CLSLP on the initial web page. The original Asilomar paper “Constrained Least-Squares Design and
Characterization of Affine Phase Complex FIR Filters”, reference [1], is included as PDF file, “Constrained Least-
Squares FIR Filter Synthesis.pdf” which is included in the normal CLSLP software distribution.

The http://www.wejc.com/ website has more information on other computer science, engineering, or
mathematical algorithms as well as free downloads. If you have interest in any joint-work or just want to write,
feel free to write at wejc@wejc.com. We are in Washington State, United States.

6. References
[1] A. G. Jaffer and W. E. Jones, "Constrained least-squares design and characterization of affine phase

complex FIR filters," Proceedings of 27th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, USA, 1993, pp. 685-691 vol.1, doi: 10.1109/ACSSC.1993.342607.

[2] A. G. Jaffer and W. E. Jones, "Weighted least-squares design and characterization of complex FIR
filters," in IEEE Transactions on Signal Processing, vol. 43, no. 10, pp. 2398-2401, Oct. 1995, doi:
10.1109/78.469851.

[3] A. G. Jaffer, W. E. Jones and T. J. Abatzoglou, "Weighted least-squares design of linear-phase and
arbitrary 2-D complex FIR filters," 1995 International Conference on Acoustics, Speech, and Signal
Processing, Detroit, MI, USA, 1995, pp. 1256-1259 vol.2, doi: 10.1109/ICASSP.1995.480467.

12

Figure 1: Amplitude: Ex6 2047-Coefficient Complex-Value CLSLP LPFIR [EXP,ABS].

mailto:wejc@wejc.com
http://www.wejc.com/
http://www.wejc.com/

CLSLP LPFIR Filter Synthesis Errata
Support Files Follow

Requires a Recent GNU or Equivalent C++ Compiler

 [C++20 Language Standard Source Code Used]

Contents

LS_FIR_Filter.h The C++ header file for the filter synthesis software.

LS_FIR_Filter.cpp The C++ source file for the filter synthesis software.

AlignedMemAlloc.h SSE and AVX C++ vector allocator for faster execution on
SIMD machines.

CLEAN A BASH script that clears the CMAKE build directory.

BUILD_AND_RUN A BASH script that performs a CMAKE build then runs the
just-built program.

GENERATE_PLOTS A BASH script that generates amplitude and phase plots, as
PNG files, using GNUPLOT.

Start.cpp The source code listing for the c++ main (where the program
begins).

Constrained Least-
Squares Design and
Characterization of

Affine Phase
Complex FIR Filters

The Asilomar paper “Constrained Least-Squares Design and
Characterization of Affine Phase Complex FIR Filters” ref
[1]. Detail on the general theory behind CLSLP LPFIR
filters with all the requisite math. The C++ subroutines
used here for CLSLP, are coded directly from the definitions
in this document.

13

Constrained Least-Squares Design and Characterization of Affine Phase
Complex FIR Filters

Amin G. J a e r and William E. Jones

Hughes Aircraft Company, Fullerton, CA

Abstract

in many signal processing applications, the need
arises for the design of complex coefficient finite impulse
response (FIR) filters to meet the specijcations which
cannot be approximated by real coefficient FIR jlters.
This paper presents a new technique for the design of
complex FIR filters based on minimizing a weighted
integral squared-error criterion subject to the constraint
that the resulting j l t er response be affine phase (i.e.,
generalize linear phase). The technique makes use of the
necessav and sufficient conditions for a causal complex
FIR jilter to possess afline phase which are explicitly
derived here. The method is non-iterative and
computationally efficient. Several illustrative filter
design examples are presented with excellent results.

1. Introduction.

The subject of the design of finite impulse
response filters has a long history, as evidenced by a
parhal list of publications [l]-[5]. For the most part,
however, the previous publications have been concemed
with the design of real coefficient FIR filters whose
fiequency response functions H# necessarily satisfy
~ (f) = ~ * (- f) , where * denotes complex conjugate. For a
sigruficant class of sensor signal processing problems,
however, the desired frequency response will not
necessarily satisfy this condition, e.g. the design of
asymmetric notch filters for clutter cancellation problems
in airborne radar or moving-platform active sonar
systems. These systems and, in general, systems where
analyt~c signals are to be processed to yield filter
responses not satisfying this condition, mandate the need
for complex coefficient FIR filters.

Although several authors have addressed the
design of FIR filters by complex Chebyshev
approximations [6]-[8], their works were restricted to real
coefficient filters and their methods do not generalize
readily to the complex coefficient case. Preuss [9]
addressed the design of complex FIR filters using the

Chebyshev norm and presented some interesting
examples. However, his method involved a heuristic
modification of the Remez exchange algorithm resulting
in an iterative procedure that is not guaranteed to
converge to the optimal solution. Weighted least-squares
techniques [lo], [l l] also seem to have been applied only
to the real coefficient case and, unlike the methods of this
paper, appear to require a dense fiequency sampling grid
to model the desired amplitude response.

This paper is concemed with the design of
complex coefficient FIR filters to satisfy a specified
multiband amplitude response, based on minimizing a
weighted integral squarederror criterion subject to the
constraint that the resulting filter response possesses
aflne phase (i.e. linear phase with an offset). The
incorporation of the affine phase constraint leads to good
filter design and, moreover, is often a requirement in
many system applications. The minimization is carried
out subject to appropriate constraints on the filter
coefficients (e.g. conjugate-symmetry constraints) needed
to satisfy the a!Xne phase property. These constraints for
complex FIR filters are explicitly derived here in general
form. An important feature of the present work is the use
of the piecewise linear or exponential models to spec@
the desired multiband amplitude response, leading to an
efficient, closed-form evaluation of certain integrals
required in the computation of the optimal filter
coefficient vector. This avoids the need for solving a
discretized problem using a dense fiequency sampling
grid for the desired amplitude response, with the attendant
problems in the transition bands. The filter design
method requires on~y the solution of a set of N
simultaneous linear equations (where N is the filter
length) with a Hermitian-Toeplitz coefficient matrix,
which can be obtained in only O(N*) computations using
the efficient Levinson or Trench algorithms [131.

Some illustrative complex coefficient filter
design examples are also presented, including the design
of asymmetric notch filters required for clutter
suppression, and bandpass differentiators, with excellent
results in general and direct comparison to previously
published results for the latter example. Further

Presented at the 27th Annual Asilomar Conference, Nov. 1-3,1993, Pacific Grove California.

685
1058-6393/93 $03.00 0 1993 IEEE

examples, and the design of unconstrained complex FIR
filters, canbefoundin [14].

2. Conditions for causal complex-valued FIR
fdters to possess affine phase

The conditions for real-valued causal FIR filters
to possess linear phase, including linear phase with an
offset, more appropriately termed afJine phase, are well
known and have been derived in [4] and [5]. However,
their methods do not directly extend to the complex
c&€icient FIR filter case. It also appears that the
necessary and sufficient conditions for complex FIR filters
to be afthe phase (including strict Linear phase) do not
appear to have been previously derived or stated, although
special cases have been used in the literature [9]. The
filter response for a causal N length FIR filter with
complex coefficients h(O), h(l) , . . . , h(N - 1) is given by

n=O
where, in (l), the sampling interval is taken as equal to 1
second so that f represents normalized frequency. We
deduce, in the following theorem, the necessary and
s a c i e n t conditions for ~ (f) to have an affine phase
function

for some a and p. The proof does not require separate
treatments of even and odd length filters and is more
general and precise than previous ones pertaining to the
real filter case [5] . In order to exclude filters with leading
or trailing zero coefficients which effectively alter the
length of the filter, we impose the conditions h(0) z 0,

The main results of this Section are contained in

< p (f) = - 2 g a + p (2)

h (N - 1) # 0.

the following theorem and its corollaries.

Theorem: The jilter response of a causal
complex coeflcient FIR filter, with coeficients
h (~) , h (l) , . . . , A (N - 1) where h (~) # 0, h(N - 1) # 0,
is afine phase of the form (2) if and only if
h(n) = tJ2S h'(N - 1 - n),
Furthermore, the delay term a is necessarily given by
a = (N - 1)/2

n = o,.*., N - 1

proof: We prove necessity, i.e. the "only if" part,
first. The affine phase property implies that (1) can be
rewritten in the form

n=O I

where the term inside the braces is purely real, i.e. equal
to its conjugate. Hence, equating this term to its
conjugate and letting z = eizd results in, explicitly,

(4) h(0)z" + h(1)za-I + . . . + h(N - l)Z=-N+'

In (4), z and its powers constitute a set of complex
exponential functions that are linearly independent [151.
Hence (4) can only be satisfied for all values of z by
equating the coefficients of like powers of z on both sides
of (4). Since the powers of z on the left and right sides of
(4) are, in descending order, {a, a - 1, . . . , a - N + 1)
and { N - 1 - a, N - 2 - a,. . . , - a} respectively and
since h(O)#O, h (N - I) # O by assumption, we must
have that the highest and lowest powers in the former set
fall within the range of the latter set, i.e.,

(5)
(6)

But then, it follows from (5) that 0 5 a I (N - 1)/2
and from (6) that (N - 1)/2 I a I N - 1 , from which
it follows that

(7)
precisely. Substituting (7) into (4), letting
m = N - 1 -n on the right side of (4) and rearranging
yields

-a I a I N - 1 - a
-a I a - N + 1 5 N - 1 - a

a = (N - 1)/2

n=O 1
(8)

Equating coefficients of same powers of z on both
sides of (8) (because of linear independence of the
complex exponentials of z and its powers) yields

h(n) = eJ21 h * (~ - 1 -e), n = 0, ..., N- 1 (9)
which, together with (7), proves the necessity part of the
theorem. It is noted that setting p= o or *% in (9)

yields the conjugate symmetric and anticonjugate
symmetric filters respectively:

(10)

(11)

h(n)=h*(N - 1-n), n = O,. . . ,N- 1

h(n) = - h*(N - 1 - n), n = 0,. . . ,N - 1

Sufficiency: This follows immdately; for a
proof see [14].

Corollary 1: If the filter coefficients are
restricted to be real, it can be shown that the conditions
(9) result in just two Merent constraints

(12) h(n) = h(N - 1 -n), n = 0,. . . , N - 1

686

h (n) = - h (N - 1 - n) , n=o, ..., ~ - 1 (13)
which d e h e the symmetric and anti-symmetric filters
respectwely, in agreement with [5] . The proof is omitted
here for lack of space but can be found in [141.

Corollarv 2: We will show that it suflices for
filter design applications to apply the theorem for /.?= 0
and rotate the output phase by p. In (3), let
ho(n) = e-jS h(n) where the h(n) satisfy the conditions
of the theorem. For n = 0,. . . , N - 1 , we have

(14)

and
(15)

h(n) = ej2p h* (N - 1 - n)

h,,(n) = e18 h * (~ - 1 -n)

= h , . (N - l - n)
Hence ho(n) satisfies the conddons of the theorem for
strict linear phase (with p= 0). Hence the filter response
(3) can be written as

where
H(f) = e’j Ho(f) (16)

J
with a = (N - 1) / 2 . Ho(f), as given by (17), is the
frequency response of a strict linear phase filter and hence
(16) states that the frequency response of an arbitrary
affine phase filter can be obtained by multiplying H,, (f)
by e’’, as was to be shown.

3. Linear phase FIR filter design by
constrained weighted least-squares method.

We consider here the problem of designing
complex coefficient FIR filters to approximate a specified
complex valued frequency response by employing a
weighted integral least-squares error criterion. Let
zD (f) be the desired complex valued frequency response
and W (f) be a real nonnegative piecewise continuous
weighting function. z D (f) is of the form

zD(f) = aD(f) e’*’(’) where u D (f) and O D (f) are
the desired amplitude and phase responses respectively.
Let b = [h(01, h (l) , . . ., h (~ - 1) 1‘ represent the
complex coefficient FIR filter of length N . H f l , as given
by (1) can be written as

(18) H (f) = 8 (f) h

eiZ4N-‘)f lr where d (f) = [1,eJ2#, ...,

and the superscripts T and H denote the transpose and
conjugate transpose operators. We seek to obtain the
coefficient vector h_ that minimizes the weighted integrd
squared-error criterion

subject to the constraint (1). It is noted that the criterion
(19) allows for zD(f) being specified over compact
subsets of the normalized frequency interval [0,1) and
that W(f) may equal zero over some of the subsets. In
the design examples given in Section 5, W(f) is chosen
so that criterion (19) becomes one of minimizing the
relative integral squared error. This is discussed more
fully in Section 4.

The conjugate symmetry constraint (10) on the
filter coefficients can be compactly represented as

where E is the N x N exchange matrix with ones on the
crossdagonal and zeros elsewhere. The exchange matrix
has the properties that ET = E and E 2 = I (the identity
matrix) so that E-’ = E. Note also that the formulation
(20) applies to both even and odd length filters, so that
separate treatments of these two cases are unnecessary.

The cost function (19) is a real-valued,
nonnegative function of the complex vector !I-. Its
minimization may be accomplished by the use of a
complex gradient operator and its associated matrix-
vector calculus operations as described by Brandwood
[131. Let 12 = b, + j by where hl and by are the real and
imaginary components of the complex vector h. Define
the complex gradient operator as

Then a necessary and sufficient condition for a stationary
point of J(h_) is that V,, J(b) = g. Equation (19) can be
written as

h’=Eh_ (20)

V , = 1 / 2 (i Y a x - i q a y) (21)

Using the constraint equation h’ = E I! or, equivalently,
hH =hT E,weget

(23) 1 [+ b T E d (f) P (l) ! !

IzLl(f)l2 -z;(f)dH(f)h
J(b)= J;wlf> - b T W f) z g (f) df

Differentiating with respect to h_ (see [131 for details on
applying the complex gradient operator to linear and
quadratic forms), and equating to 0 yields

687

where R = E d(f) d_"(f).
vields

Rearrangement of (24)

j;w(f) [%(.r)d_(f) + .;,(f)d*(f)]df
Although (25) expresses the filter coefficient vector h_ as
the solution of a set of simultaneous linear equations, it
can be simplified further to yield a more compact and
computationally efficient form. First note that since
R = E d_(f) &(f) and pre-multiplication of a matrix
by E reverses its rows, we can readily show that R = RT.
Now let

(26) Q = ji W f) d (f) dH (f) d f

L = p(f) [E z , (f) d _ (f) + z ~ (f) d _ ' (f)]df (27)
Then (25) reduces to

The Hermitian matrix Q is also Toeplitz since its (m,n)th

element, given by j dw(/) e'2n(m-n)f df , depends only on

the difference (m - n). Equation (28) represents a system
of N simultaneous linear equations, with a Hermitian-
Toeplitz coefficient matrix, for the solution of the filter
coefficient vector h,. Additionally, since the
Vandermonde type vectors d (f) are linearly independent
for distinct values of f in the interval [0, I), the matrix Q
will be of 111 rank N (and positivedefinite) as long as
the range of the integration in (28) encompasses any
interval or at least N discrete distinct points in the
frequency domain where W (f) is not zero. This will be
true for any non-trivial, well-posed filter design problem,
resulting in a unique solution for h _ . The matrix Q is
completely specified by either its first row or column and
the system of linear equations (28) can be efficiently
solved in O (N ~) operations by the Levinson recursion or
Trench algorithm [12], resulting in a significant
computational savings over general matrix inversion
techniques which require O(iv3) operations.

Note that h_, as given by the solution of (28)
actually satisfies the conjugate-symmetry constraint
regardless of the specification of the desired phase
response Q) D (f), which need not be linear. However,
since the constraint (20) would only be imposed for linear
phase filter design problems, it would be appropriate for
the desired phase response O D (f) to be specified as
linear phase with a delay of (N - 1)/2, i.e. as

Q h = l / 2 E r - (28)

@ D (f) = - 2 @(N - 1)/2.

The Q matrix and the r, vector, required in (28)
are speciiied as follows: The first column of the
Hermitian-Toeplitz matrix Q, which completely defines
Q, is given by

df m=1, ..., N (29) [Q],, = I , W (f) e J 2 n (4 /

Using aD(f) = - 2 #(N - 1)/2, the nth element of the
L vector by (27) can be shown to be given by

In the filter design examples presented in Section 5 the
weighting function corresponds to the squared relative
error. Furthermore, since most filter design problems,
including the examples in Section 5, require
approximating the frequency response over multiple
subbands, which may be disjoint, the weighting function
specializes to

where M is the number of fiequency subbands of interest,
a, (f) is the desired amplitude response over the kth
subband and c k are additional discrete weights included
in (3 1) to permit emphasizing certain frequency segments
over others. Under these assumptions, (29) and (30)
reduce to

(33) M -J2 d(n-(' 4 4 2)

[[In =2 J:,2 e aDk(f> df n = I N
k=l

Two particular types of amplitude response functions
a&), the linear amplitude and the linear log-amplitude
or exponential response models, are employed in the
examples of Section 5. These result in the closed-form
expressions for the integrals in (32) and (33) which are
readily evaluated and also yield excellent performance as
demonstrated in Section 5.

4. Weighting and amplitude response models.

In this section two specific amplitude response
functions, the linear and exponential, used in conjunction
with relative square-error weighting, are used as models
for the linear phase complex FIR filter design technique,
the constrained technique, defined in Section 4. The
linear model is defined by

(34) a D k (f > = ak + P k f

and ak = A,, - <,P,

688

and the exponential model by
a, (f) = e r k + st f

-2Yk e
[Q k] , , = ck e 2 (l n (" J - 1) - 6 k)

(35)

m = I , N

(43)

- f (J Z d n - (N - 1) / 2) + 6 &) e
= - 2ck e-" (j 2 d n - (N - 1) / 2) + 6 k)

.- .
for the kth frequency segment.

The exponential model implies that the log-
amplitude is linear over the frequency segment whch is
particularly suitable for many applications. The
emnentiai model is ais0 computatiodiy more efficient

where E i (x) is the exponential integral as defined in
Gradshteyn and Ryzhik [16] and Abramowitz and Stegun
[17]. It can be easily evaluated in terms of the sine and
cosine integrals si(') and c~(x) related by

f =FkZ (39)

n = 1 N

the expressions

The general result of evaluating (40) and (41) is given by

5. Illustrative filter design examples.

This section examines two applications of the
constrained algorithm, the asymmetric v-notch filter and
the bandpass differentiator examined by Preuss [9]. The
examples in thls section employ the amplitude response
models of Section 4 used in conjunction with relative
squareerror weighting.

The filter design examples in this Section were
generated using a MATLAB program based on the results
of Sections 3 and 4. By exploiting the Toeplitz structure
of matrix Q in as defined in Section 3, the Levinson or
Trench algorithms [12] can be employed to reduce the
computational complexity of the solution from an o (n 3)

solution to an O (n 2) solution. Using these techniques the
10 1 -tap V-Notch filter design problem below was
generated in 3.35 seconds in MATLAB on an 486DX
JBM-PC clone running at 50 MHz.

The Asymmetric V-Notch Filter Design
Problem: The asymmetric V-Notch filter examined here
is defined by the speciftcation

0 dB, O ~ f 4 (45)

0 dB, .8Sf 4.0
where the quantities in brackets in (45) are the end-points
of the exponential amplitude response function over the
frequency interval specified ([A k l . A p 2] for the kth
frequency interval in (34)). The asymmetry in the desired
amplitude response can arise in moving platform radar or
active sonar systems where the unwanted clutter returns
exhibit Doppler shifts that are largely "down-Doppler"
relative to the Doppler frequency of the moving platform.
Due to this asymmetry, the filter cannot be synthesized by
conventional real FIR filter design techniques as the

689

uxflicients can never be represented as a purely real
sequence. For this example, each frequency subband is
equally weighted in the sense that the ck parameter
defined in (31) is equal to I for each segment. Equations
(28), (38) and (39) are used to evaluate the filter
coefticients as functions of the parameters specified in the
design specification.

Figure 1 illustrates a sample asymmetric v-notch
filter generated with 101 coefficients. The filter
coefticients are indeed conjugate-symmetric as expected
from the arguments made in Section 2. The relative error
of the filter synthesis

is plotted in Figure 2. The RMS error used here is
defined bv

The 101-tap linear phase V-notch filter acheves
maximum relative error of about 0.47 dl3 and an rms error
of .004759.

I 1 I J
0.e 0.- 0.0 0.0 1

rv-9Y-”DI. HI

Figure 1. 101-Tap Asymmetric V-Notch Filter Amplitude
Response.

0.. I I I I
I I l l I

e -.=
c
4
- 0

-0.0

Figure 2. 101-Tap Asymmetric V-Notch Filter Error.

The Bandpass Differentiator: In this Section
the linear phase bandpass differentiator filter specified by
Preuss [9] is generated using the constrained technique as
described in Sections 3 and 4. In Preuss’ paper this filter
is specified as

(48)

Note that this filter contains an affine phase offset
produced by thej constant in (48). By the argument given
in Section 2, it suffices to ignore this affine phase offset
for the purposes of generating a linear phase filter and
later multiply the complex FIR filter coefficients by thisj
term which forms the final filter. This post-multiplication
doesn’t change the filter‘s amplitude response.

The realization of the bandpass differentiator as
specified in (48) using the constrained algorithm is given

Hd(f) { ~ 2 $
sf 0 03750 5 f 5 042500

0 a57500 i J 5 0.96250

bY
[.0710,.8700] ck = 2 x lo6, ,0355 5 f <.4350

.43505f 4 6 5 0
[.0009,.0009] Ck = 1, S650 r; f +. 9625

lH,(f 1 = [.8700,.0009] ck = 100, i
where the quantities in brackets are the end-points of the
linear amplitude response h a i o n over the frequency
interval specified ([.+I&] for the kth frequency interval
in (35)). The quantities ck are the auxiliafy weights
applied to the subbands as defined in (31). This
realization was found to yield satisfactory fit errors in the
passband while preserving acceptable stop-band rejection.
It is also desirable to weight the stop-band to a lesser
degree than the passband to prevent an inordinate amount
of effort being employed in flattening the stop-band. The
results of our realization of the bandpass differentiator can
be seen in Figure 3.

The filter design fit error used in this example is
specified by

690

Preuss obtained a relative peak amplitude error of
+z x lo4 over the frequency interval [.0375,.4250].
The results of the application of the constrained algorithm
are given in Figures 3 and 4. Note that the constrained
algorithm achieves a smaller relative error over most of
the passband (rms value of 1.084 x lo4), although the
peak relative error is greater at about -4.3 x lo4. This
result is consistent with the nature of the weighted
integral squared error and the Chebyshev criteria.

Fig 3. 32-Tap Bandpass Differentiator Amplitude Response.

Fig 4. 32-Tap Bandpass Differentiator Filter Fit Error.

References

[11 L. R. Rabiner and R. W. Schafer, 'Recursive and non-
recursive realizations of digital filters designed by frequency
sampling techniques,' IEEE Trans. Audio Electroacoustics, vol.
AU-19, no. 3, pp. 200-207, Sept. 1971.
[2] T. W. Parks and J. H. McClellan, "Chebyshev
approximations for non-recursive digital filters with linear

phase," IEEE Trans. Circuit Theory vol. CT-19, no. 2, pp. 189-
194, March 1972.
[3] J. H. McClellan and Parks, "A unified approach to the
design of optimal FIR linear phase digital filters," IEEE Trans.
Circuit Theory, vol. CT-20, pp. 697-701, Nov. 1973.
[4] L. R. Rabiner and B. Gold, Theory and Applications
of Digital Signal Processing, Prentice-Hall, Inc., New Jersey,
1975.
[5] A. V. Oppenheim and R. W. Schafer, Discrete-Time
Signal Processing. Edgewood Cliffs, New Jersey, Prentice-Hall,
1989.
[6] X. Chen and T. W. Parks, "Design of FIR filters in the
complex domain," IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-35, no. 2, pp. 144-153, Feb. 1987.
[7] N. N. Chit and J. S . Mason, "Complex Chebyshev
approximation for FIR digital filters," IEEE Trans. Signal
Processing, vol. 39, No. 1, pp. 49-54, Jan. 1991.
[8] A. S. Alkhairy, K. G. Christian and J. S . Lim, "Design
and characterization of optimal FIR filters with arbitraq phase,"
IEEE Trans. Signal Processing, vol. 41, No. 2, pp. 559-572, Feb.
1993.
[9] K. Preuss, "On the design of FIR filters by complex
Chebyshev approximation," IEEE Trans. Acoust., Speech and
Signal Processing, vol. 37, No. 5 , pp. 702-712, May 1989.
[lo] Y. C. Lim, J. H. Lee, C. K. ChenandR. H. Yang, "A
weighted least squares algorithm for quasi-equiripple FIR and
W digital filter design," IEEE Trans. Signal Processing, vol.

[l l] C. S . Burms, A. W. Soewito and R. A. Gopinath,
"Least squared error FIR filter design with transition bands,"
IEEE Trans. Signal Processing, vol. 40, No. 6, pp. 1327-1340,
June 1992.
[12] S. L. -le, Digital Spectral Analysis with
Applications. Englewd Cliffs, New Jersey, Prentice-Hall,
1987.
[13] D. H. Brandwood, "A complex gradient operator and
its applications in adaptive array theory," IEE Proceedings, vol.
130, Pts. F and H, No. 1, pp. 11-16, February 1983.
[14] A. G. Jaffer and W. E. Jones, "Weighted Least-
Squares Design and Characterization of Complex FIR Filters",
submitted to IEEE Trans. Signal Processing.
[lS] Tom M. Apostol, Calculus, Volume II. Second
edition, John Wiley & Sons, New York, 1969.
[16] I. S . Gradshteyn and I. M. R y h k , Table of Iniegmls,
Series. andProducts. Orlando, Florida: Academic Press, 1980.
[17] M. Abramowitz and I. E. Stegun, Handbook of
Mathematical Functions. Washington, D.C.: National Bureau Of
Standards Applied Mathematics Series #55, 1972.

40, NO. 3, pp. 551-558, March 1992.

691

2398 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. IO, OCTOBER 1995

Correspondence

Weighted Least-Squares Design and
Characterization of Complex FIR Filters

Amin G . Jaffer and William E. Jones

Abstract- This correspondence presents two novel weighted least-
squares methods for the design of complex coefficient finite impulse
response (FIR) filters to attain specified arbitrary multiband magnitude
and linear or arbitrary phase responses. These methods are computation-
ally efficient, requiring only the solution of a Toeplitz system of N linear
equations for an N-length filter that can be obtained in o(N 2) operations.
Illustrative filter design examples are presented.

I. INTRODUCTION

The subject of real FIR filter design using both the weighted
least-squares error (WLS) and Chebyshev criteria has been addressed
extensively in the past [1]-[4]. More recently, the design of complex
FIR filters that satisfy specified asymmetric amplitude or phase
responses necessary in radar/sonar clutter suppression problems and
other applications has been considered [SI-[9]. Nguyen [7] and Pei
and Shyu [8] have employed the eigenfilter technique to approxi-
mately optimize the complex FIR filter WLS error design criterion.
The eigenfilter technique, in addition to being only approximately
optimal, requires the computation of a principal eigenvector by
an iterative technique, where the number of iterations required for
convergence can be quite large, resulting in heavy computational
demands.

Two complex FIR filter WLS synthesis techniques-one for ar-
bitrary phase response (unconstrained method) and the other in-
corporating the linear phase constraint (constrained m e t h o d t a r e
developed here. The direct WLS optimization methods presented here
utilize the complex gradient operator [lo], which avoids decomposing
the complex variables into real and imaginary parts. The linear-
phase constrained method is developed using the complex Lagrange
multiplier constraint, which is valid for either odd or even length
filters. The filter coefficient vector is obtained very efficiently for
both techniques as the solution of the resulting Hermitian-Toeplitz
system of linear equations using a noniterative method (Levinson
algorithm) [l 11. Additionally, for a special but useful class of filters,
our techniques result in a solution that altogether avoids the need for
matrix inversion or the solution of a system of linear equations, thus
reducing the computational demands significantly. The relationship
between the constrained and unconstrained techniques is also exam-
ined. Finally, two illustrative filter design examples are presented
with direct comparison of example two with the eigenfilter design
example of Nguyen [7].

11. WEIGHTED LEAST-SQUARES COMPLEX FIR FILTER DESIGN

We derive here weighted least-squares algorithms for designing
complex FIR filters to approximate arbitrary magnitude response

Manuscript received August 1, 1993; revised March 20, 1995. The associate
editor coordinating the review of this paper and approving it for publication
was Prof. Tamal Bose.

The authors are with Hughes Aircraft Company, Fullerton, CA 92634-3310
USA.

IEEE Log Number 9413863.

constrained to have affine (generalized linear) phase as well as FIR
filters with arbitrarily specified magnitude and phase responses. The
conditions for complex FIR filters to posses affine phase are known
in the literature and are also explicitly derived in [9]. Although the
affine phase conditions are slightly more general, it suffices for our
purposes to incorporate only the conjugate-symmetric constraints on
the filter coefficients that generate linear phase as other filters of this
class can be readily obtained from this form.

A. Constrained Weighted Least-Squares Technique
The conjugate-symmetric constraints are given by h (1 1) = h * (S -

1 - n) , n = 0.. . . , I\- - 1, where h = [h(O). hzipyy. h (3- l)]'
represents the complex FIR filter coefficient vector.' We seek to
obtain the coefficient vector h that minimizes the weighted integral
squared-error criterion over the normalized frequency interval [0, 1)

J (h) = Ul(f) l .D(f) - dH(f)hl'df (1) I '
subject to the above conjugate-symmetric constraints. Here, U!(f) is
a nonnegative frequency weighting function, :U(f) is the desired
complex frequency response, d(f) is the frequency "steering" vector

dH (f)b represents the filter frequency response, and f represents
the actual frequency normalized by the sampling frequency. The
objective function given by (1) can accommodate arbitrary desired
multiband magnitude responses including zero weighted frequency
intervals.

The conjugate-symmetric constraints can be compactly represented
by h* = Eh, where E is the A: x N exchange matrix with ones on
the cross diagonal and zeros elsewhere. Note that E = E", and
E 2 = I , where I is the identity matrix. Incorporation of this vector
constraint via the complex Lagrange vector formulation yields the
augmented objective function

given by d (f) = [I, e I 2 " f e J 2 a (N - 1) f] , the inner product

(2) H
J1 (h) = J (h) - X7 [h' - Eh] - 1 [b - Eh*].

Note that J(h) and Jl@) are both real-valued functions for any
complex vector h. Expanding J (h) , differentiating with respect to
according to [lo] (which treats a complex variable and its conjugate
as independent variables) and equating to the null vector to satisfy
the condition for the unique minimum yields

Let

(5)

Note that Q is a Hermitian-Toeplitz matrix that is fully defined by
either its first row or column. Use of (4) and (5) in (3) yields

Q ~ - E = X - EX*. (6)

'The superscripts *, T , and H represent conjugate, transpose, and
conjugate-transpose operations, respectively.

1053-587x/95$04.00 0 1995 IEEE

Authorized licensed use limited to: William Jones. Downloaded on April 01,2023 at 22:20:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 10. OCTOBER 1995 2399

O R -
,-

-101

/

L

0 4

::

0 4

4 6 -

0.8 -

~ -~~

mo-b 0 1 0 2 'L- 0 3 0 4 ~ O S . 0 6 ~- 0 7 0 1 - 0 9 I '0 0 1 0 2 0 3 0 4 o s 0 6 ~ 0 7 o n o v I

NORMAUZED FREOUENCY (RMS Relathre Ermr=Om4759) NORMALIZED FREOUENCY

(a) (b)

Fig 1 Asymmetnc notch filter design example (a) Filter magnitude response, (b) relat~ve error in magnitude response

Let - = X- EX'. Then

Qh = g + - ?. (7)

= E h is satisfied.

E Q , = E & + E y = E c - ? * . - - (8)

In addition, since Q is Hermitian-persymmetric, EQ = Q*E [l l] ,
and hence

We next determine -, so that the constraint
From (6) and (7), we have that

Q*EL= E g - ; ' . - (9)

Subtracting (9) from the conjugate of (7) results in

Q*(h* - Eh] = 27' - + g* - Eg.

7 = -[E&' - lL]

(10)

Applying the constraint = E h to (10) results in
1

- 2
and the solution for the filter coefficient vector as

(11)
1 1 -1

2 - 2
Qh= - [u + E g *] o r b = -Q [g+Eg*] .

B. Unconstrained Weighted Least-Squares Technique
We derive here the unconstrained weighted least-squares com-

plex FIR filter suitable for satisfying arbitrarily specified magnitude
and phase responses (including nonlinear phase responses) that are
necessary in many system applications. The solution immediately
follows from the derivation in Section 11-A by deleting the Lagrange
multiplier constraints in (2) , which results In 7 = 11 in (7), yielding
the solution for the filter coefficient vector as-

(12) 4 h = II or h = 4-'U -

where Q and (I are defined as before in (4) and (5).

C. Remarks
1) It can be readily verified that the constrained weighted least

squares solution given by (1 1) does indeed satisfy the constraint
- h' = Eh, producing linear phase response, regardless of the
desired complex response zu (f). The unconstrained solution
given by (12) of course does not satisfy this property in general.
However, it of interest to note that if the desired response is

z n (f) = n ~ (f) e J O D (j) , where n u (f) is the desired magni-
tude response and ou (f) is linear phase with delay T = (S -
1) /2 , then the two solutions become one and the same. This
can be seen by substituting zo(f) = n u (f) r in
the expression for g in (5) and simplifying, resulting in the nth
element of g being given by

- , 2?Tf (. \ - l) / 2 .

It can also be shown that the nth element of Ex' is given by
the same expression, whereupon Eg* = and (11) becomes
- h = Q-'g, which is the same as (12).

2) Since the matrix 4 is Hermitian-Toeplitz and, hence, fully
defined by either its first row or column, the solution for the
filter coefficient vector can be obtained quickly and accurately
in o() operations by the Levinson recursion algorithm [1 I]
as opposed to general matrix inversion methods, which require
o(S') operations. Furthermore, our methods obtain the true
WLS solution, whereas the eigenfilter method [5], [7] obtains
an approximate WLS solution that requires a variable number
of iterations to compute the principal eigenvector (depending on
the eigenvalue spread) and that necessitates o(.V2) operations
per iteration. Note also that as a special but useful case, the Q
matrix in this correspondence reduces to a scalar multiple of the
identity matrix when the weighting function is uniform and the
desired amplitude response encompasses the entire frequency
interval without unspecified frequency bands, allowing the
solution of the coefficient vector to be obtained trivially.

3) Since the constrained technique results in a conjugate-
symmetric filter, it would ostensibly appear computationally
attractive to obtain the solution directly in terms of half the
coefficient vector for even length filters. However, the resulting
solution is actually more demanding computationally than the
one presented here due to the more complicated and non-
Toeplitz structure of the associated matrix of the system of
linear equations (see also [12]).

111. ILLUSTRATIVE FILTER DESIGN EXAMPLES
In this section, we examine two filter design examples that illustrate

the use of the constrained and unconstrained WLS techniques pre-
sented here. A linear-phase asymmetric ?>-notch filter design example
suitable for radar/sonar clutter suppression applications is used to

Authorized licensed use limited to: William Jones. Downloaded on April 01,2023 at 22:20:37 UTC from IEEE Xplore. Restrictions apply.

2400

I

4

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 10, OCTOBER 1995

_I
ai

NORMAUZED FREQUENCY

(a)

NORMALIZED FRE(IUENCY

(C)

016 U 1 08 019

NORMALIZED FREQUENCY (RMS Mapludc Emr=OMS086)

(b)

-1 I

NORMALIZED FRMUENCY

(d)

Fig. 2. Arbitrary transfer function example of Nguyen [7] using the unconstrained WLS method of this correspondence: (a) Magnitude response; (b)
error in magnitude response; (c) group delay; (d) error in group delay.

illustrate the use of the constrained technique, whereas a direct
comparison with the results of Nguyen [7] for his arbitrary transfer
function filter design example is used to illustrate the use of the
unconstrained technique.

The techniques developed here necessitate the evaluation of certain
integrals for the computation of Q and 3 given by (4) and (5). In
general, these integrals would require numerical integration; how-
ever, for an important subclass of practical filter design problems
(including all of the examples presented here), these integrals are
readily evaluated in closed form. In particular, integrals arising
from filter design problems specified by multisegment piecewise
linear and exponential amplitude (linear in log-amplitude) response
specifications with uniform or inverse squared-error weighting can be
evaluated in closed form, resulting in improved numerical efficiency
and accuracy.

The Linear Phase Asymmetric V-Notch Filter Design Problem:
The linear phase asymmetric v-notch filter design example is specified
by the desired amplitude response function

O d B , 0 5 f 4 0 . 5
[0, -401 dB, 0.5 5 f 4 0.7
[-40,0] dB, 0.7 5 f 4 0.8

0 dB, 0.8 5 f 4 1.0

where the quantities in brackets specify the amplitudes at the end-
points of the exponential curve segment (linear in log-amplitude) that
specifies the desired amplitude response in the frequency interval
specified. The exponential amplitude response function is given by

for the lcth frequency interval [Fk l , F k z) of the filter design speci-
fication. As the asymmetric 21-notch filter has a 40-dB variation in
its amplitude response, a minimum relative squared error estimation
criterion is employed to balance the filter fit error amongst the
specified frequency intervals evenly, resulting in the specification of
the weighting function as

A full derivation of the Q matrix and 3 vector for the relative
squared error weighting and the linear and exponential amplitude
response models is given in [9]. As this filter's amplitude response
is asymmetric about any point in the normalized frequency domain
(0 to 1 Hz.), it can only be generated with a complex FIR filter
design technique; there is no purely real representation for these
filter coefficients.

Authorized licensed use limited to: William Jones. Downloaded on April 01,2023 at 22:20:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 10, OCTOBER 1995 240 1

The amplitude response obtained by use of the constrained al-
gorithm for the 101-tap complex linear phase FIR filter is given
in Fig. l(a), and the relative squared error, which is expressed in
decibels, is given in Fig. l(b). The constrained algorithm achieves a
peak relative error of 0.41 dB at the frequency interval edges and
a root-mean-square (RMS) error of 0.004759. The use of a relative
squared-error minimization criterion is evident in the evenness of the
error ripples across the large range of the filter’s amplitude response
Fig. l(a).

The Arbitruty Filter Transfer Function Design Example of Nguyrn
[i]: Example 5, taken from Nguyen [7], is used to compare the
unconstrained WLS technique presented here with the eigenfilter
method of [7]. Nguyen’s example consists of a specification with
four passbands and one stopband with specified amplitude and phase
requirements that, due to its asymmetry, necessitates a complex FIR
filter synthesis technique. The unspecified frequency intervals are
unweighted and do not contribute to the total fit error. Nguyen’s
example is specified with an absolute squared-error optimization cri-
tenon rather than the relative squared-error criterion used previously.
The amplitude response attained by the unconstrained WLS technique
for a 50-tap FIR filter is given in Fig. 2(a), the amplitude error in
Fig. 2(b), the group delay in Fig. 2(c), and the group delay error
in Fig. 2(d). The corresponding Rh4S errors are also shown in the
figures. While the results obtained here are nearly identical to those
of Nguyen, they represent the true WLS solution, which is also
computed much more efficiently than the eigenfilter technique of 171

also Remark 2).

REFERENCES

T. W. Parks and J. H. McClellan, “Chebyshev approximations for
nonrecursive digital filters with linear phase,” IEEE Trans. Circuit
Theory, vol. CT-19, no. 2, pp. 189-194, Mar. 1972.
L. R. Rabiner and B. Gold, Theory and Applications of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.
X. Chen and T. W. Parks, “Design of FLR filters in the complex domain,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, no. 2,
pp. 144-153, Feb. 1987.
Y. C. Lim, J. H. Lee, C. K. Chen, and R. H. Yang, “A weighted

least squares algorithm for quasiequiripple FIR and IIR digital filter
design,” IEEE Trans. Signal Processing, vol. 40, no. 3 , pp. 551-558,
Mar. 1992.
P. P. Vaidyanathan and T. Q. Nguyen, “Eigenfilters: A new approach
to least-squares FIR filter design and applications including Nyquist
filters,” IEEE Trans. Circuits Syst., vol. CAS-34, pp. 11-23, Jan. 1987.
K. Preuss, “On the design of FIR filters by complex Chebyshev
approximation,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
37, no. 5, pp. 702-712, May 1989.
T. Q. Nguyen, “The design of arbitrary FIR digital filters using the
eigenfilter method,” IEEE Trans. Signal Processing, vol. 41, no. 3, pp.
1128-1139, Mar. 1993.
S . C. Pei and J. J. Shyu, “Complex eigenfilter design of arbitrary
complex coefficient FIR digital filters,” IEEE Trans. Circuits Syst., vol.
40, no. 1 , pp. 3240, Jan. 1993.
A. G. Jaffer and W. E. Jones, “Constrained least-squares design and
characterization of affine phase complex FIR filters,” in Proc. 27th Ann.
Asilomar Con$ Signals, Syst., Comput., Nov. 1993, pp. 685491.
D. H. Brandwood, “A complex gradient operator and its applications in
adaptive array theory,” Proc. Inst. Eiec. Eng., vol. 130, pts. F and H,
no. 1, pp. 11-16, Feb. 1983.
S. L. Marple, Digital Spectral Analysis with Applications. Englewood
Cliffs, NJ: Prentice-Hall, 1987.
A. G. Jaffer, W. E. Jones, and T. J. Abatzoglou, “Weighted least-
squares design of linear-phase and arbitrary 2-D complex FIR filters,’’
presented at the 1995 IEEE Int. Con$ Acoust., Speech, Signal Processing
(ICASSP-95), May 1995.

Constraints on the Cutoff Frequencies
of Mth-Band Linear-Phase FIR Filters

James M. Nohrden and Truong Q. Nguyen

Abstract-In this correspondence, constraints are derived for the cut-
off frequencies of linear-phase FIR -11th-band filters such that the filters
have good passband and stopband characteristics, i.e. ones that very
closely approximate an ordinary (non Mth-band) filter designed using
some optimal method. Constraints on lowpass filters are first considered,
and the results are extended to multiband filters.

I. INTRODUCTION

Mth-band filters have found numerous applications in recent
years [2]-[4], [9], [l l] , [14], [15]. In signal processing, Mth-band
filters are used in 1-D [I51 and 2-D [2] perfect reconstruction
filter banks, nonuniform sampling [4], interpolation filters [141,
and intersymbol interference rejection [1 11. Additionally, Mth-band
filters have found applications in antenna array design [3]. .Ilth-
band filters are commonly designed as lowpass filters with cut-off
frequencies at K / J I . This does not have to be the case. In fact,
bandpass and multiband Ilth-band filters may be designed using the
constrained set of cut-off frequencies derived in this paper.

Fig. 1 shows the desired response of a lowpass filter where d!, and
are the passband and stopband cutoff frequencies, respectively.

h,, and h, are the corresponding errors. The center frequency -i.(. of
a lowpass filter is defined as

Let H (L) denote the transfer function of an odd length linear-phase
FIR filter

and define a noncausal shifted version of f?(:) as H (:) = z‘ H (L 1,
where L = (-Y - 1)/2. H (z) is more suitable for the analytical work
in this correspondence, whereas I?(:) is actually implemented.

Optimal design techniques exist to minimize the frequency domain
error for linear-phase FIR filters. One such example is the Remez
algorithm [5], which minimizes the maximum error and therefore has
an equiripple frequency response. Another algonthm is the eigenfilter
approach [13], which minimizes the least squares error.

Let us define a good Mth-band filter as one that has approximately
the same passband and stopband error characteristics as a non-Mth-
band optimal filter with the same specifications. In other words, a
good -21th-band filter is an Jlth-band filter that IS very nearly an
optimal filter.

Manuscript received July 31, 1994; revised April 7, 1995. Thos work was
supported by the U.S. Army Space and Strategic Defense Command under
Air Force contract No. F 19628-90-C-OOO2. The associate editor coordinating
the review of this paper and approving it for publication was Dr. Kamal
Premaratne.

J. M. Nohrden is with Massachusetts Institute of Technology, Lincoln
Laboratory, Lexington, MA 02173-9108.

T. Q. Nguyen is with the Department of Electrical and Computer Engineer-
ing, University of Wisconsin, Madison, Madison, WI 53706 USA.

IEEE Log Number 9413860.

1053-587)3/95$04.00 0 1995 IEEE

Authorized licensed use limited to: William Jones. Downloaded on April 01,2023 at 22:20:37 UTC from IEEE Xplore. Restrictions apply.

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/Start.cpp Sun Sep 15 15:44:40 2024 1

///

// //

// FilePath: Start.cpp //

// Author: William Earl Jones //

// Email: wejc@wejc.com //

// Tag: DEVELOP //

// TimeDate: 20240801_151824 //

// //

///

// //

// Copyright (c) 2024 William Earl Jones //

// //

// Redistribution and use in source and binary forms, with or without modification, are //

// permitted provided that the following conditions are met: //

// //

// 1. Redistributions of source code must retain the above copyright notice, this list of //

// conditions and the following disclaimer. //

// //

// 2. Redistributions in binary form must reproduce the above copyright notice, this list of //

// conditions and the following disclaimer in the documentation and/or other materials //

// provided with the distribution. //

// //

// 3. Neither the name of the copyright holder nor the names of its contributors may be used //

// to endorse or promote products derived from this software without specific prior //

// written permission. //

// //

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS //

// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF //

// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //

// COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, //

// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF //

// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) //

// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR //

// TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, //

// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. //

// //

///<wejc>//

#include <fftw3.h>

#include <iostream>

#include <fstream>

#include <chrono>

#include "CLSLP.h"

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/Start.cpp Sun Sep 15 15:44:40 2024 2

double BlackmanHarrisWindow(const double K, const double N);

int main(int /* NumArgs */, char** /* ArgList */)

{

 const uint32_t FftSize = 1U << 12;

 const uint32_t NumFiltCoefs = 501U;

 vector<complex<double>> OutCoefs(NumFiltCoefs);

 std::ofstream OutFiltCoefs("FilterCoefs.dat");

 std::ofstream OutSpectral ("Spectral.dat");

 std::ofstream OutPhase ("Phase.dat");

 std::cout << ">>[FilterSynthesis: Example Filters]" << std::endl;

 {

 // Generate the filter

 CLSLP Filt;

 // â\200\230AddSymmetricâ\200\231 is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz

 // â\200\230Addâ\200\231 is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz

 Filt.AddSymmetric(CLSLP::eLin_AbsErr, .0, .1, 0.00, 0.00, 1);

 Filt.AddSymmetric(CLSLP::eExp_RelErr, .1, .4, 1e-4, 1.00, 1);

 Filt.AddSymmetric(CLSLP::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

 // Generate the filter coefficients

 const auto Clock_0 = chrono::high_resolution_clock::now();

 // Calculate the FIR Filter Coeffcients

 Filt.GenFilter(NumFiltCoefs, OutCoefs);

 const auto Clock_1 = chrono::high_resolution_clock::now();

 for(auto K=0U ; K < NumFiltCoefs ; ++K)

 {

 OutFiltCoefs << OutCoefs[K] << std::endl;

 }

 const double DeltaTime =

 double(chrono::duration_cast <chrono::microseconds> (Clock_1 - Clock_0).count());

 cout << "--FIR Filter Coefficient Generation: NumCoefs:"

 << NumFiltCoefs << " [TotalSynthPeriod:"

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/Start.cpp Sun Sep 15 15:44:40 2024 3

 << DeltaTime << " uS PerCoefSynthPeriod:"

 << (DeltaTime/NumFiltCoefs) << " uS/Coef]"

 << std::endl;

 cout << "--Plot Generation" << std::endl;

 // Take DFT of these coefficents

 {

 fftw_complex *In=nullptr, *Out=nullptr;

 fftw_plan Plan=nullptr;

 In = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FftSize);

 Out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FftSize);

 // Plan the FFT

 Plan = fftw_plan_dft_1d(FftSize, In, Out, FFTW_FORWARD, FFTW_PATIENT);

 // Fill input data.

 // No need to iterate on [0,FftSize). Only (0,NumFiltCoefs) non-zero.

 for(auto K=0U ; K < NumFiltCoefs ; ++K)

 {

 const double BHW = BlackmanHarrisWindow(K, NumFiltCoefs);

 In[K][0] = BHW * real(OutCoefs[K]);

 In[K][1] = BHW * imag(OutCoefs[K]);

 }

 for(auto K=NumFiltCoefs ; K < FftSize ; ++K)

 {

 In[K][0] = 0;

 In[K][1] = 0;

 }

 // Perform the FFT

 fftw_execute(Plan);

 for(int32_t K = -(FftSize>>1) ; K < (signed) (FftSize>>1) ; ++K)

 {

 const double A = ((double) K / FftSize);

 double Mag = 0;

 // Amplitude

 if(K >= 0)

 {

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/Start.cpp Sun Sep 15 15:44:40 2024 4

 Mag = 10.*log10(Out[K][0]*Out[K][0] + Out[K][1]*Out[K][1]);

 }

 else

 {

 assert((K + (signed) FftSize) >= 0);

 const uint32_t K2 = K + FftSize;

 Mag = 10.*log10(Out[K2][0]*Out[K2][0] + Out[K2][1]*Out[K2][1]);

 }

 OutSpectral << A << " " << Mag << std::endl;

 // Phase Response

 double Phase = 0;

 // Phase

 if(K >= 0)

 {

 Phase = atan2(Out[K][1], Out[K][0]);

 }

 else

 {

 Phase = atan2(Out[K+FftSize-1U][1], Out[K+FftSize-1U][0]);

 }

 OutPhase << A << " " << Phase << std::endl;

 }

 // Clean Up

 fftw_destroy_plan(Plan);

 fftw_free(In);

 fftw_free(Out);

 }

 }

 std::cout << "<<[FilterSynthesis]" << std::endl;

 return 0;

}

double BlackmanHarrisWindow(const double Num, const double Den)

{

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/Start.cpp Sun Sep 15 15:44:40 2024 5

 const double Mult = M_PI * Num / Den;

 const double BHD = 0.35875

 - 0.48829 * cos(2*Mult)

 + 0.14128 * cos(4*Mult)

 - 0.01168 * cos(6*Mult);

 return BHD;

}

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.h Tue Sep 17 17:59:09 2024 1

///

// FilePath: CLSLP.h //

// Author: William Earl Jones //

// Email: wejc@wejc.com //

// Tag: CLSLP_RELEASE_20240914_180000 //

// TimeDate: 20240914_132446 //

///

// Copyright (c) 2024 William Earl Jones //

// //

// >> Standard BSD 3-Clause License << //

// //

// Redistribution and use in source and binary forms, with or without modification, are //

// permitted provided that the following conditions are met: //

// //

// 1. Redistributions of source code must retain the above copyright notice, this list of //

// conditions and the following disclaimer. //

// //

// 2. Redistributions in binary form must reproduce the above copyright notice, this list of //

// conditions and the following disclaimer in the documentation and/or other materials //

// provided with the distribution. //

// //

// 3. Neither the name of the copyright holder nor the names of its contributors may be used //

// to endorse or promote products derived from this software without specific prior //

// written permission. //

// //

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS //

// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF //

// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //

// COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, //

// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF //

// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) //

// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR //

// TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, //

// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. //

///<wejc>//

#pragma once

#include <complex>

#include <vector>

#include <sstream>

#include <list>

#include <iomanip>

#include <cassert>

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.h Tue Sep 17 17:59:09 2024 2

#include <cstdint>

#include <gsl/gsl_sf.h>

using namespace std;

/**

 class CLSLP

 The CLSLP C++ class is a tool that generates the coefficients for a linear-phase FIR

 filter filters. These filters are specified in line segments of frequency and amplitude

 (i.e. freq:[F0,F1], amp: [A0,A1]). Two types of segments: linear and exponential. Linear

 segmentâ\200\231s amplitude are specified by an equation of the form B*f+A where B and A are picked

 so that the line-segment end points, freq:[F0,F1] and amp: [A0,A1], are satisfied. The other

 type of segment is the exponential segment defined by exp(B*f+A). In this case the end points

 are specified by the user as freq:[F0,F1], amp: [loge(A0),loge(A1)]. Please read the PDF that

 accompanies this software for examples of use and mathematical background. These algorithms

 were developed and published by Amin G. Jaffer and William E. Jones in the 1994 timeframe.

 The Diagnostics member function gives an example of each segment type and the code associated

 with FIR filter coefficient generation and evaluation.

**/

class CLSLP

{

public:

 // Some constants

 static const double TPI;

 static const double PI2;

 // Segment types

 // The interval is defined by [F0,F1] in frequency and [A0,A1] in amplitude for Linear Segments

 // The interval is defined by [F0,F1] in frequency and [loge(A0),loge(A1)] in amplitude for Exponential Segments

 // Note that frequencies are specified in the interval [0,1). 1/2 is PRF/2 at all sample rates.

 typedef enum eSegType

 {

 eExp_RelErr, // exp(B*f+A) segment, relative error

 eExp_AbsErr, // exp(B*f+A) segment, absolute error

 eLin_RelErr, // B*f+A segment, relative error

 eLin_AbsErr // B*f+A segment, absolute error

 } SegType;

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.h Tue Sep 17 17:59:09 2024 3

private:

 // Exponential to a imaginary power

 static inline complex<double> ExpI(const double ImagPart)

 {

 return complex<double>(cos(ImagPart), sin(ImagPart));

 }

 // The E1 exponential integral

 static inline complex<double> ExpInt_1_I(const double ImagArg)

 {

 return complex<double>(-gsl_sf_Ci(fabs(ImagArg)), -.5*M_PI+gsl_sf_Si(ImagArg));

 }

 // The E2 exponential integral

 static inline complex<double> ExpInt_2_I(const double Arg)

 {

 return (ExpI(-Arg) - MultI(Arg * ExpInt_1_I(Arg)));

 }

 // Multiply by i

 static inline complex<double> MultI(const complex<double> Arg)

 {

 return complex<double>(-imag(Arg), real(Arg));

 }

public:

 /**

 class Seg

 **/

 // A filter segment definition

 class Seg

 {

 public:

 // Linear Segments are: B*f+A. The interval is defined by [F0,F1] in frequency and [A0,A1] in amplitude.

 // Exponential Segments are: exp(B*f+A). The interval is defined by [F0,F1] in frequency and

 // [loge(A0),loge(A1)] in amplitude.

 // Note that frequencies are specified in the interval [0,1). 1/2 is PRF/2 at all sample rates.

 SegType Type;

 double F0, F1, A0, A1, W;

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.h Tue Sep 17 17:59:09 2024 4

 Seg(const SegType Type_Param,

 const double F0_Param, const double F1_Param,

 const double A0_Param, const double A1_Param,

 const double Weight_Param=1.)

 {

 Type = Type_Param;

 F0 = F0_Param;

 F1 = F1_Param;

 A0 = A0_Param;

 A1 = A1_Param;

 W = Weight_Param;

 }

 // This call modifies the Q matrix and R vectors to account for this segment. It in turn calls

 // specific generator functions based on the type of segment desired.

 // Linear Segments are: B*f+A. The interval is defined by [F0,F1] in frequency and [A0,A1] in amplitude.

 // Exponential Segments are: exp(B*f+A). The interval is defined by [F0,F1] in frequency and

 // [loge(A0),loge(A1)] in amplitude.

 // Note that frequencies are specified in the interval [0,1). 1/2 is PRF/2 at all sample rates.

 void Gen_Segment(vector<complex<double>>& Q,

 vector<complex<double>>& R,

 const double Weight=1.);

 // Display a segment definition

 string Display(const double SampleRate=1) const

 {

 ostringstream oS;

 oS << "SEG[";

 switch(Type)

 {

 case eExp_RelErr:

 oS << "Exp_Rel";

 break;

 case eExp_AbsErr:

 oS << "Exp_Abs";

 break;

 case eLin_RelErr:

 oS << "Lin_Rel";

 break;

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.h Tue Sep 17 17:59:09 2024 5

 case eLin_AbsErr:

 oS << "Abs_Lin";

 break;

 default:

 oS << "Error";

 assert(false);

 break;

 }

 oS << "] "

 << setiosflags(ios::fixed) << setprecision(6) << setw(12) << (this->F0*SampleRate)

 << ": "

 << setiosflags(ios::fixed) << setprecision(8) << setw(12) << this->A0

 << " <---> "

 << setiosflags(ios::fixed) << setprecision(6) << setw(12) << (this->F1*SampleRate)

 << ": "

 << setiosflags(ios::fixed) << setprecision(8) << setw(12) << this->A1

 << " W:"

 << setiosflags(ios::fixed) << setprecision(8) << setw(12) << this->W

 << "]";

 return oS.str();

 }

 private:

 // exp(B*f+A) segment, relative error

 // -Note that frequencies are specified in the interval [0,1). 1/2 is PRF/2 at all sample rates.

 void Gen_ExpRel_Segment(vector<std::complex<double>>& Q,

 vector<std::complex<double>>& R,

 const double Weight);

 // exp(B*f+A) segment, relative error

 // -Note that frequencies are specified in the interval [0,1). 1/2 is PRF/2 at all sample rates.

 void Gen_ExpAbs_Segment(vector<std::complex<double>>& Q,

 vector<std::complex<double>>& R,

 const double Weight);

 // B*f+A segment, relative error

 // -Note that frequencies are specified in the interval [0,1). 1/2 is PRF/2 at all sample rates.

 void Gen_LinRel_Segment(vector<std::complex<double>>& Q,

 vector<std::complex<double>>& R,

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.h Tue Sep 17 17:59:09 2024 6

 const double Weight);

 // B*f+A segment, absolute error

 // -Note that frequencies are specified in the interval [0,1). 1/2 is PRF/2 at all sample rates.

 void Gen_LinAbs_Segment(vector<std::complex<double>>& Q,

 vector<std::complex<double>>& R,

 const double Weight);

 };

private:

 // The segments list

 list<Seg> Segs;

protected:

 // Linear system solution of ’matrix(Q) vector(Coefs) = vector(R)’ via generalized Levenson’s recusion

 bool Levenson(vector<complex<double>>& pR,

 vector<complex<double>>& g,

 vector<complex<double>>& X);

 complex<double> InnerProdR(const vector<complex<double>>& InData1,

 const uint32_t Start,

 const uint32_t StopPlus1,

 const vector<complex<double>>& InData2) const;

 complex<double> InnerProdC(const vector<complex<double>>& InData1,

 const uint32_t Start,

 const uint32_t StopPlus1,

 const vector<complex<double>>& InData2) const;

public:

 // Add a new filter segment

 // Linear Segments are: B*f+A. The interval is defined by [F0,F1] in frequency and [A0,A1] in amplitude.

 // Exponential Segments are: exp(B*f+A). The interval is defined by [F0,F1] in frequency and

 // [loge(A0),loge(A1)] in amplitude.

 // Note that frequencies are specified in the interval [0,1). 1/2 is SampleRate/2 here.

 void Add(const SegType Type,

 const double F0, const double F1,

 const double A0, const double A1,

 const double Weight=1.)

 {

 assert(F0 < F1);

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.h Tue Sep 17 17:59:09 2024 7

 // Add: Design for a assymetric filter. This type of filter will process the real and imaginary channels

 // with different coefficients. [To generate a Symmetric, real-valued, filter, specifiy desired

 // filter responses in a conjugate-symmetric pattern about SampleRate/2.]

 // === by the design.

 Segs.push_back(Seg(Type, F0, F1, A0, A1, Weight));

 }

 // Add a new filter segment symmetric between the positive andnegative frequencies

 // Linear Segments are: B*f+A. The interval is defined by [F0,F1] in frequency and [A0,A1] in amplitude.

 // Exponential Segments are: exp(B*f+A). The interval is defined by [F0,F1] in frequency and

 // [loge(A0),loge(A1)] in amplitude.

 // Note that frequencies are specified in the interval [0,1). 1/2 is SampleRate/2 at all sample rates.

 void AddSymmetric(const SegType Type,

 const double F0, const double F1,

 const double A0, const double A1,

 const double Weight=1.)

 {

 assert(F0 <= .5);

 assert(F0 <= .5);

 assert(F0 < F1);

 // AddSymmetric: Filter response is conjugate-symmetric about PRF/2 and linear-phase response is assumed

 // ============ by the fiter design algorithm.

 Segs.push_back(Seg(Type, F0, F1, A0, A1, Weight));

 Segs.push_back(Seg(Type, 1.-F1, 1.-F0, A1, A0, Weight));

 }

 // Generate the filter coefficients out into Out. This involves the solution of the linear system

 // ’matrix(Q) vector(Coefs) = vector(R)’.

 bool GenFilter(const unsigned int FilterLen, vector<complex<double>>& Out);

 // Get the number of filter segments

 unsigned int GetNumSegments(void) const

 {

 return Segs.size();

 }

 // Clear all filter segments

 void Clear(void)

 {

 Segs.clear();

 }

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.h Tue Sep 17 17:59:09 2024 8

 // Get segment list reference

 list<Seg>& GetSegs(void)

 {

 return this->Segs;

 }

};

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 1

///

// FilePath: CLSLP.cpp //

// Author: William Earl Jones //

// Email: wejc@wejc.com //

// Tag: CLSLP_RELEASE_20240914_180000 //

// TimeDate: 20240914_132446 //

///

// Copyright (c) 2024 William Earl Jones //

// //

// >> Standard BSD 3-Clause License << //

// //

// Redistribution and use in source and binary forms, with or without modification, are //

// permitted provided that the following conditions are met: //

// //

// 1. Redistributions of source code must retain the above copyright notice, this list of //

// conditions and the following disclaimer. //

// //

// 2. Redistributions in binary form must reproduce the above copyright notice, this list of //

// conditions and the following disclaimer in the documentation and/or other materials //

// provided with the distribution. //

// //

// 3. Neither the name of the copyright holder nor the names of its contributors may be used //

// to endorse or promote products derived from this software without specific prior //

// written permission. //

// //

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS //

// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF //

// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //

// COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, //

// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF //

// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) //

// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR //

// TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, //

// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. //

///<wejc>//

#include <cassert>

#include <cmath>

#include <fstream>

#include <iostream>

#include "CLSLP.h"

using namespace std;

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 2

const double CLSLP::TPI = 2. * M_PI;

const double CLSLP::PI2 = M_PI * M_PI;

// Generate the filter coefficients into Out

bool CLSLP::GenFilter(const unsigned int FilterLen,

 vector<complex<double>>& Out)

{

 vector<complex<double>> Q(FilterLen);

 vector<complex<double>> R(FilterLen);

 // Set output size

 Out.resize(FilterLen);

 // Is zero length

 if(FilterLen == 0) return false;

 // Over The Frequency Segments

 auto I = Segs.begin();

 for(; I != Segs.end() ; ++I)

 {

 I->Gen_Segment(Q, R);

 }

 // Perform Levenson To Solve The System

 const bool Solution = Levenson(Q, R, Out);

 return Solution;

}

// Fill the Q-matrix and the R-vector for linear system solution to filter coefficients

void CLSLP::Seg::Gen_Segment(vector<complex<double>>& Q,

 vector<complex<double>>& R,

 const double Weight)

{

 // Pick the frequency interval segment (line) type

 switch(this->Type)

 {

 case eExp_RelErr:

 this->Gen_ExpRel_Segment(Q, R, Weight);

 break;

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 3

 case eExp_AbsErr:

 this->Gen_ExpAbs_Segment(Q, R, Weight);

 break;

 case eLin_RelErr:

 this->Gen_LinRel_Segment(Q, R, Weight);

 break;

 case eLin_AbsErr:

 this->Gen_LinAbs_Segment(Q, R, Weight);

 break;

 default:

 assert(false); // Set exception in DEBUG mode

 break;

 }

}

// exp(B*f+A) segment, relative error

void CLSLP::Seg::Gen_ExpRel_Segment(vector<complex<double>>& Q,

 vector<complex<double>>& R,

 const double Weight)

{

 const double Min_Segment = 1e-32; // Need > 0 here

 const double MidPoint = .5 * (Q.size() - 1);

 double lA1 = 0;

 double lA0 = 0;

 complex<double> Ret { 0 };

 if(this->A1 >= Min_Segment)

 {

 lA1 = log(this->A1);

 }

 else

 {

 lA1 = log(Min_Segment);

 }

 if(this->A0 >= Min_Segment)

 {

 lA0 = log(this->A0);

 }

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 4

 else

 {

 lA0 = log(Min_Segment);

 }

 // Put in standard form

 const double sB = (lA1 - lA0) / (this->F1 - this->F0);

 const double sA = lA0 - sB * this->F0;

 // Form The Q Toeplitz Matrix (Vector Here)

 for(auto L=0U ; L < Q.size() ; ++L)

 {

 if(!((L==0) && (sB == 0)))

 {

 Ret = ExpI(TPI*L*this->F1) * exp(-2.*(sB*this->F1+sA));

 Ret -= ExpI(TPI*L*this->F0) * exp(-2.*(sB*this->F0+sA));

 Q[L] += Weight * Ret / complex<double>(-2.*sB, TPI*L);

 }

 else

 {

 Q[L] += Weight * exp(-2.*sA) * (this->F1 - this->F0);

 }

 }

 // Form The R Vector

 for(auto L=0U ; L < R.size() ; ++L)

 {

 if(!((L==MidPoint) && (sB == 0)))

 {

 Ret = ExpI(-TPI*this->F1*(L-MidPoint)) * exp(-(sB*this->F1+sA));

 Ret -= ExpI(-TPI*this->F0*(L-MidPoint)) * exp(-(sB*this->F0+sA));

 R[R.size()-1-L] += Weight * Ret / complex<double>(-sB, -TPI*(L-MidPoint));

 }

 else

 {

 R[R.size()-1-L] += Weight * exp(sA) * (this->F1 - this->F0);

 }

 }

}

// exp(B*f+A) segment, absolute error

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 5

void CLSLP::Seg::Gen_ExpAbs_Segment(vector<complex<double>>& Q,

 vector<complex<double>>& R,

 const double Weight)

{

 const double Min_Segment = 1e-32; // Need > 0 here

 const double MidPoint = .5 * (Q.size() - 1);

 double lA1 = 0;

 double lA0 = 0;

 complex<double> Ret { 0 };

 if(this->A1 >= Min_Segment)

 {

 lA1 = log(this->A1);

 }

 else

 {

 lA1 = log(Min_Segment);

 }

 if(this->A0 >= Min_Segment)

 {

 lA0 = log(this->A0);

 }

 else

 {

 lA0 = log(Min_Segment);

 }

 // Put in standard form

 const double sB = (lA1 - lA0) / (this->F1 - this->F0);

 const double sA = lA0 - sB * this->F0;

 // Form The Q Toeplitz Matrix (Vector Here)

 for(auto L=0U ; L < Q.size() ; ++L)

 {

 // See if we can assume a zero denominator

 if(L != 0)

 { // L != 0

 Ret = -ExpI(TPI*L*this->F1);

 Ret -= -ExpI(TPI*L*this->F0);

 Q[L] += Weight * MultI(Ret) / (TPI*L);

 }

 else

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 6

 { // L == 0

 Q[L] += Weight * (this->F1 - this->F0);

 }

 }

 // Form The R Vector

 for(auto L=0U ; L < R.size() ; ++L)

 {

 if(!((L == MidPoint) && (fabs(sB) <= Min_Segment)))

 { // Not midpoint

 Ret = ExpI(-TPI*this->F1*(L-MidPoint)) * exp(sB*this->F1+sA);

 Ret -= ExpI(-TPI*this->F0*(L-MidPoint)) * exp(sB*this->F0+sA);

 R[R.size()-1-L] += Weight * Ret / complex<double>(sB, -TPI*(L-MidPoint));

 }

 else

 { // Midpoint

 R[R.size()-1-L] += Weight * (this->F1 - this->F0) * exp(sA);

 }

 }

}

// B*f+A segment, relative error

void CLSLP::Seg::Gen_LinRel_Segment(vector<complex<double>>& Q,

 vector<complex<double>>& R,

 const double Weight)

{

 const double MidPoint = .5 * (Q.size() - 1);

 double Phase0 = 0;

 double Phase1 = 0;

 complex<double> Ret { 0 };

 // Put in standard form

 const double sB = (this->A1 - this->A0) / (this->F1 - this->F0);

 const double sA = this->A0 - sB * this->F0;

 // Form The Q Toeplitz Matrix (Vector Here)

 for(auto L=0U ; L < Q.size() ; ++L)

 {

 // Handle special cases

 if(L != 0)

 { // L != 0

 if(sB != 0)

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 7

 { // B != 0 && L != 0

 Phase1 = -TPI*L*(sB*this->F1+sA) / sB;

 Phase0 = -TPI*L*(sB*this->F0+sA) / sB;

 Ret = -ExpInt_2_I(Phase1) / (sB*(sB*this->F1+sA));

 Ret -= -ExpInt_2_I(Phase0) / (sB*(sB*this->F0+sA));

 Q[L] += Weight * Ret * ExpI(-TPI*sA*L/sB);

 }

 else

 { // B == 0 && L != 0

 Ret = -MultI(ExpI(TPI*L*this->F1));

 Ret -= -MultI(ExpI(TPI*L*this->F0));

 Q[L] += Weight * Ret / (TPI*sA*sA*L);

 }

 }

 else

 { // L == 0 && B != 0

 if(sB != 0)

 { // B!= 0

 Ret = -1. / (sB*(sB*this->F1+sA));

 Ret -= -1. / (sB*(sB*this->F0+sA));

 Q[L] += Weight * Ret;

 }

 else

 { // L == 0 && B == 0

 Q[L] += Weight * (this->F1 - this->F0) / (sA*sA);

 }

 }

 }

 // Form The R Vector (Vector Here)

 for(auto L=0U ; L < R.size() ; ++L)

 {

 // Handle special cases

 if(L != MidPoint)

 { // L != MidPoint

 if(sB != 0)

 { // B != 0 && L != MidPoint

 Phase1 = TPI * (sB*this->F1+sA)*(L-MidPoint) / sB;

 Phase0 = TPI * (sB*this->F0+sA)*(L-MidPoint) / sB;

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 8

 Ret = -ExpInt_1_I(Phase1);

 Ret -= -ExpInt_1_I(Phase0);

 R[R.size()-1-L] += Weight * Ret * ExpI(TPI*sA*(L-MidPoint)/sB) / sB;

 }

 else

 { // B == 0 && L != MidPoint

 Ret = MultI(ExpI(-TPI*this->F1*(L-MidPoint)));

 Ret -= MultI(ExpI(-TPI*this->F0*(L-MidPoint)));

 R[R.size()-1-L] += Weight * Ret / (TPI*sA*(L-MidPoint));

 }

 }

 else

 { // L == MidPoint && B != 0

 if(sB != 0)

 { // B != 0

 Ret = log(sB*this->F1+sA);

 Ret -= log(sB*this->F0+sA);

 R[R.size()-1-L] += Weight * Ret / sB;

 }

 else

 { // L == MidPoint && B == 0

 R[R.size()-1-L] += Weight * (this->F1 - this->F0) / sA;

 }

 }

 }

}

// B*f+A segment, absolute error

void CLSLP::Seg::Gen_LinAbs_Segment(vector<complex<double>>& Q,

 vector<complex<double>>& R,

 const double Weight)

{

 const double MinQR_Denom = 1e-6;

 const double MidPoint = .5 * (Q.size() - 1);

 double Phase0 = 0;

 double Phase1 = 0;

 double Denom = 0;

 // Put in standard form

 const double sB = (this->A1 - this->A0) / (this->F1 - this->F0);

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 9

 const double sA = this->A0 - sB * this->F0;

 // Form The Q Toeplitz Matrix (Vector Here)

 for(auto L=0U ; L < Q.size() ; ++L)

 {

 Denom = -TPI * L;

 // See if we can assume a zero denominator

 if(abs(Denom) >= MinQR_Denom)

 { // Denominator not zero

 Phase0 = TPI * this->F0 * L;

 Phase1 = TPI * this->F1 * L;

 // Update Q

 Q[L] += Weight * (complex<double>(cos(Phase1), sin(Phase1)) -

 complex<double>(cos(Phase0), sin(Phase0))) /

 complex<double>(0., -Denom);

 }

 else

 { // Denominator zero

 // Update Q

 Q[L] += Weight * (this->F1 - this->F0);

 }

 }

 // Form The R Vector

 for(auto L=0U ; L < R.size() ; ++L)

 {

 Denom = 4. * PI2 * pow((double) L - MidPoint, 2);

 if(abs(Denom) >= MinQR_Denom)

 { // Denominator not zero

 // Update R

 const complex<double> A1(0., L*TPI*(sB*this->F1 + sA));

 const complex<double> A0(0., L*TPI*(sB*this->F0 + sA));

 const complex<double> B1(sB, -TPI*MidPoint*(sB*this->F1 + sA));

 const complex<double> B0(sB, -TPI*MidPoint*(sB*this->F0 + sA));

 Phase0 = -TPI * F0 * (L - MidPoint);

 Phase1 = -TPI * F1 * (L - MidPoint);

 const complex<double> X= ((A1 + B1) * complex<double>(cos(Phase1), sin(Phase1))) -

 ((A0 + B0) * complex<double>(cos(Phase0), sin(Phase0))) ;

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 10

 // Update R

 R[R.size()-1-L] += Weight * X / Denom;

 }

 else

 { // Denominator zero

 // Update R

 R[R.size()-1-L] += Weight * ((.5*sB*this->F1*this->F1 + sA*this->F1) -

 (.5*sB*this->F0*this->F0 + sA*this->F0));

 }

 }

}

// Must Have At Least 2 Dimensions!!!!!

bool CLSLP::Levenson(vector<complex<double>>& pR,

 vector<complex<double>>& g,

 vector<complex<double>>& X)

{

 complex<double> Sum, Delta, Alpha, V;

 vector<complex<double>> R(X.size());

 vector<complex<double>> Y(X.size());

 vector<complex<double>> Z(X.size());

 const double MinDivisor = 1e-12;

 if(pR.size() < 2) return false;

 if(g.size() < 2) return false;

 if(X.size() < 2) return false;

 if(norm(pR[0]) < (MinDivisor*MinDivisor)) return false;

 X[0] = g[0]/pR[0];

 Y[0] = -pR[1]/pR[0];

 R[0] = pR[1];

 // Over The Dimensions

 for(auto K=1U ; K < X.size() ; ++K)

 {

 // Calculate Delta

 Sum = this->InnerProdC(R,0,K,Y);

 Delta = Sum + pR[0];

 if(norm(Delta) < (MinDivisor*MinDivisor)) return false;

 // Calculate V

 Sum = this->InnerProdR(R,0,K,X);

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 11

 V = (g[K]-Sum)/Delta;

 // Update the Z and U vectors

 for(auto L=0U ; L<K ; L++)

 {

 X[L] += V * conj(Y[K-1-L]);

 }

 X[K] = V;

 if((K+1) < X.size())

 {

 // Calculate Alpha

 Sum = this->InnerProdR(R,0,K,Y);

 Alpha = -(pR[K+1]+Sum)/Delta;

 // Update the Z and U vectors

 for(auto L=0U ; L<K ; ++L)

 {

 Z[L] = Y[L] + Alpha * conj(Y[K-1-L]);

 }

 for(auto L=0U ; L<K ; ++L)

 {

 Y[L] = Z[L];

 }

 Y[K] = Alpha;

 R[K] = pR[K+1];

 }

 }

 // Good return

 return true;

}

// Linear system solution via Levenson’s recursion

complex<double> CLSLP::InnerProdC(const vector<complex<double>>& InData1,

 const uint32_t Start,

 const uint32_t StopPlus1,

 const vector<complex<double>>& InData2) const

{

 complex<double> R = 0;

/home/wej/WORK/CLSLP/OTHER_CLSLP_EXAMPLES/Filter_1_eExp_RelErr_mid_seg/CLSLP.cpp Tue Sep 17 17:59:09 2024 12

 for(uint32_t M=Start ; M < StopPlus1 ; ++M)

 {

 R += InData1[M] * conj(InData2[M]);

 }

 return R;

}

complex<double> CLSLP::InnerProdR(const vector<complex<double>>& InData1,

 const uint32_t Start,

 const uint32_t StopPlus1,

 const vector<complex<double>>& InData2) const

{

 complex<double> R = 0;

 for(uint32_t M=Start ; M < StopPlus1 ; ++M)

 {

 R += InData1[M] * InData2[StopPlus1-1U-M];

 }

 return R;

}

