Constrained Least-Squares Linear-Phase FIR
Filter Synthesis (CLSLP)
March 11, 2025
William Earl Jones

http://www.wejc.com || wejc@wejc.com

Last Updated 03/13/25 at 19:13

1. Introduction

This document describes use of the Constrained Least-Squares Linear-Phase FIR Filter Synthesis Algorithm
CLSLP as described in reference [1]. The acronym CLSLP is not used in the technical paper and is only used
as a local convenience and as a name for the software package. The acronym LPFIR is used here as an
abbreviation for Linear-Phase Finite Impulse Response filter.

2. Linear-Phase FIR (LPFIR) Filters

A Linear-Phase FIR filter (LPFIR) is a special form of FIR filter that preserves the timing relationship between
signals of different frequencies. Non-Linear phase FIR filters have different phase responses at different
frequencies and these errors can accumulate as frequency-dependent time delays in multilayered signal-
processing schemes. The linear-phase constraint guarantees that the time delay of different frequency
components are identical. It’s also easy to show that cascaded linear-phase FIR filters are themselves linear
phase. This means complicated multi-layer filtering schemes can be employed without this cumulative phase
(timing) degradation.

The CLSLP filter synthesis algorithm is computationally efficient and fast even on a standard desktop PC. For
example, the synthesis of the filter in Section 3 below, a 501-coefficient real-valued filter, takes roughly 1.6 to 3
ms in total, or about 3 us per FIR filter coefficient on a standard desktop PC.

3. Using the CLSLP Algorithm

This Section provides illustrations of the practical use and characteristics of the Constrained Least-Squares
Linear-Phase FIR Filter (CLSLP) synthesis algorithm which was first described in reference [1]. CLSLP filters
are a minimum weighted square-error type and possess linear-phase by design.

If we can generate a linear-phase FIR filter we can always create another one with exactly the same amplitude
response by adding a constant offset to it’s phase. As long as the phase slope in frequency is correct, the filter
will have exactly the sample amplitude response as the original filter as well as possessing linear phase. Using
this argument, conjugate-symmetric, conjugate-asymmetric, and hybrid linear-phase FIR filter coefficient
configurations are all possible using the CLSLP algorithm. Member function GenerateFilter has a third

http://www.wejc.com/
mailto:wejc@wejc.com

optional parameter which is RotAngRad, or the rotation angle in radians. Setting RotAngRad to 0 results in the
generation of a conjugate-symmetric linear-phase FIR filter which is the default. Setting RotAngRad to M_PI/2
results in the generation of a conjugate-asymmetric linear-phase FIR filter again with the same amplitude
response. Setting RotAngRad to a value between 0 and M_PI/2 generates a hybrid filter somewhere between a
symmetric and asymmetric linear-phase FIR filter. RotAngRad is periodic with period . The amplitude
response of the filter will be identical though for any value of RotAngRad (radians). RotAngRad defaults to 0
or a conjugate-symmetric filter.

CLSLP filters are generated without a Fourier Transform so the fidelity of the filter coefficients is better than
what would be expected: -150 dB stop-band in Figure 3.1 below. The CLSLP algorithm is also computationally
efficient, and physically small with a memory footprint of 11 KBytes on a desktop PC. These attributes make
CLSLP ideal for embedded signal processing tasks.

For example, the 501-coefficient linear-phase FIR filter below was synthesized with double-precision floating-
point coefficients in 1.69 ms on a standard desktop PC. The center filter segment is an exponential-line segment
type, from .1 an .4 Normalized Hz, with amplitudes of -80 dB and 0 dB at the left and right filter segment edges
respectively. The other frequency segments are set to zero. Note, exponential-filter segments appear as straight
lines on dB plots.

Amp 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [EXP,ABS]

120 | | | |
- | iy
o T , . ey

Frequency, Normalized Hz
Figure 3.1: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [EXP,ABS].

Response, dB

3.1. Filter Frequency-Interval Definitions

CLSLP filter coefficients are given in Equations (32) and (33) in reference [1]. Breaking frequency up into sub-
bands is intuitive as (32) and (33) are integrals over frequency. This easily accommodates unspecified
frequency bands as well. By judiciously choosing the amplitude response functions used for these intervals,
filter synthesis can be achieved quickly resulting in high-precision LPFIR filter coefficients.

3.1.1. Frequency-Interval Types

There are currently four types of frequency intervals defined. These intervals are either linear or exponential.

An exponential interval appears as a straight line on a dB plot while a linear interval appears as a straight line
on a linear plot. Additionally these segments employ either absolute or relative weighting.

Absolute Weighting Type |Normal square-error

Relative Weighting Type |Normal square-error divided by the specified signal amplitude. This mode
artificially boosts the fit quality of lower amplitude frequency intervals. Signal
amplitudes of zero cannot be used as logarithms are employed. Use a small value
instead (e.g. 1e-8).

This is the C++ data structure specification of frequency interval types

// Segment types

// [FO,F1] in frequency and [AG@,Al1] in amplitude for Linear Segments

// [FO,F1] in frequency and [loge(A@), loge(A1)] in amplitude for Exponential Segments
// Note that frequencies are specified in the interval [0,1) Normalized Hz.

typedef enum eSegType

eExp_RelErr, // exp(B*f+A) segment, relative error
eExp_AbsErr, // exp(B*f+A) segment, absolute error
eLin_RelErr, // B*f+A segment, relative error
eLin_AbsErr // B*f+A segment, absolute error

} LS_FIR Filter;

Due to the open form of this algorithm, additional frequency-interval types can be added as needed. These four
frequency-interval types are computationally efficient and have, so far anyway, sufficed in practical filter-
design problems.

3.1.2. Segment Parameters

Five numeric values are needed for any of the four segment types mentioned in Section 3.1.1 above. Namely
X[0], X[1], Y[0], Y[1], and the weighting factor which is discussed in the next section. Here X[0] and X[1] are
interval start and stop frequencies given in Normalized Hz. The filter amplitudes at the frequency-interval
edges are specified as Y[0] and Y[1] (not in dB). The frequency interval type is Linear/Absolute error
LS _FIR_Filter::eLin_AbsErr.

3.1.3. Segment Weights

Segment weights are provided so the filter designer can change the fit quality filter sections. A value of 1 is
considered normal weighting and is used if this parameter is omitted. A segment weight of 2 doubles the fit
error in that frequency interval. Increasing the frequency segment weight will improve the fit in that segment at
the expense of fit in other frequency segments. For example, the middle filter segment of the filter illustrated in
the previous section would be specified as: X[0]=.1, X[1]=.4, Y[0]=1e-4, Y[1]=1,
Type=LS_FIR_Filter::eLin_AbsErr, Weight=1 .

3.2. Using CLSLP Software

This section illustrates installing, building, then running the CLSLP filter synthesis application.

3.3. Installation

It is fairly easy to install CLSLP and synthesize filters on any platform or context. There is no installation

procedure per se. CLSLP is released here as C++20 source code and CMAKE build files. Additionally Linux
command files CLEAN and BUILD_AND_RUN provide illustration of the proper command syntax. This
software should build on most modern operating systems and CPU architectures. Though Linux has been used
in this software’s design, MS Windows, Mac OS, and many other operating systems can be used as both the
build and run environment. Build and run environments can be set separately via compiler switches in modern
C++ compilers so heterogeneous computer operating systems and architectures can be integrated easily.

Executing BUILD_AND_RUN should do everything in one step. The CLEAN command isn’t really necessary
unless CMAKE gets confused. CLEAN empties the build directory completely.

./CLEAN # Not really necessary --- clears subdir build/
./BUILD_AND_RUN # Build then Run the software

3.4. CLSLP Software Distribution

CLSLP is distributed in C++ source code form. CMAKE build files are included as well as Linux script files to
illustrate proper use.

3.4.1. CLSLP Software Distribution

The standard CLSLP release consists of, at least, the files listed at the end of this section. The Linux GSL
special function library is necessary for CLSLP LPFIR filter synthesis. FFTW and GNUPLOT are used for plot
generation though neither is needed for coefficient synthesis itself.

A CLSLP release will contain at least the files specified below

¢ Start.cpp

* CLSLP.h

CLSLP.cpp

CLEAN
BUILD_AND_RUN
GENERATE_PLOTS

The Start.cpp module is the C++ main program. As a local convention we use Start as part of the main’s
filename to identify it. Filename like Start_x.cpp are used for C++ main files in this document. For example of
use see Section 4.1.2 below.

3.4.2. Building Application with CMAKE

The following commands are used to clean, build, run, then generate graphic plot files. The sub-directory build
is usually the CMAKE build sub-directory. Execute the following commands in the source code where you
want to store your build files. The sub-directory build is commonly used.

./CLEAN # Cleans the build directory (optional)
./BUILD_AND_RUN # Builds (CMAKE) source code and execute program
./GENERATE_PLOTS # Generate GNUPLOT plots from data files just created (optional)

3.4.3. Spectral Plots

The CMAKE current directory should now contain two new PNG graphics files: the Amplitude and Phase
Response graphs.

3.5. CLSLP Filter Synthesis Applications

The only module we need to write is the start-file, or file Start_x.cpp. This is the C++ main that calls the
CLSLP filter synthesis software. GenerateFilter is then called to synthesize the filter coefficients. The code
fragment below synthesizes an LPFIR Filter with 501 real-valued double-precision coefficients into output
vector OutCoefs. This vector is allocated on AVX (SIMD) memory boundaries. On Linux systems, -O3
(optimized compilation), is sufficient for basic SIMD support on CPUs that support it. Intel and AMD PC
CPUs normally do support it.

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h"”

// Generate the CLSLP filter Coefficients into OutCoefs

const unsigned int NumFiltCoefs = 501;

CLSLP Filt;

vector<complex<double>> OutCoefs(NumFiltCoefs); // Real-valued Coefs stored in Complex

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.AddSymmetric(LS_FIR Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1),
Filt.AddSymmetric(LS _FIR Filter::eExp_RelErr, .1, .4, 1e-4, 1.00, 1),
Filt.AddSymmetric(LS _FIR Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenerateFilter(NumFiltCoefs, OutCoefs);

3.6. Building Filter Synthesis Software

Next we compile and link the software in the previous section into an executable. We are using CMAKE and
the GNU C++ compiler build tools. The following BASH script performs the CMAKE build.

#! /bin/bash

Generate the CMAKE files
make --fresh -S . -B build -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_VERBOSE_MAKEFILE=0FF

Compile the C++ sources
cmake --build build

A listing of the CMAKE control file CMakeLists.txt is presented below as a convenience.

cmake_minimum_required(VERSION 3.10)

specify the C++ standard

set (CMAKE_BUILD_TYPE Release)

set (CMAKE_CXX_STANDARD 20)

set (CMAKE_CXX_STANDARD_REQUIRED ON)

set (CMAKE_CXX_FLAGS_RELEASE "-03 -Wall -Wextra")
set (CMAKE_CXX_FLAGS_DEBUG "-g -Wall -Wextra")

set(CMAKE_VERBOSE_MAKEFILE ON)

Set some basic project attributes
project (CLSLP
VERSION 1.00
DESCRIPTION "CLSLP Filter Synthesis")

file(GLOB SRC_FILES ${PROJECT_SOURCE_DIR}/*.cpp)

This project will output an executable file
add_executable(${PROJECT_NAME} ${SRC_FILES})

Include the configuration header in the build
target_include_directories(${PROJECT_NAME} PUBLIC "${PROJECT_BINARY_DIR}")

Math includes
target_link_libraries(${PROJECT_NAME} PUBLIC "gsl")
target_1link_libraries(${PROJECT_NAME} PUBLIC "gslcbhlas")

The following sequence of commands will perform the C++ build, then execute the synthesized code. The filter
coefficients are stored in FilterCoef.dat in ASCII form.

./CLEAN # Not necessary though cleans the CMAKE build file
./BUILD_AND_RUN # Build and Run the CLSLP software
./GENERATE_PLOTS # Generates GNUPLOT plot files (Amplitude and Phase)

4. FIR Filter Synthesis Examples

The functionality and use of the Constrained Least-Squares Linear-Phase CLSLP FIR Filter Synthesis algorithm
is described via a series of simple examples in the following sections. These sections assume you have the
software from the CLSLP Software Distribution described in Section 3.4.1 above.

4.1. Sloped-Bandpass Filter Example

We construct a linear-phase real-valued FIR filter to pass .1 to .4 Normalized Hz and null the other frequencies.
The passband starts at .1 Hz with a -80 dB response. It rises either linearly or exponentially, depending on the
type of test performed, to .4 Hz with a response of 0 dB. We use a 501-tap linear-phase real-valued FIR Filter
and the CLSLP algorithm to perform the filter synthesis. The amplitude spectra are calculated by performing a
Discrete Fourier Transform (DFT) on a zero-padded vector of filter coefficients.

All linear-phase FIR filters have conjugate-symmetric filter coefficients by the argument given in reference [1].
Since this is a real-valued filter, conjugate-symmetric corresponds to symmetric filter coefficients here.

4.1.1. ExponentiallAbsolute Weighted-Error Filter Segments

A linear-phase real-valued FIR filter with 501-coefficients is synthesized using the CLSLP algorithm. We are
testing the exponential/absolute mode here. The synthesis takes 1.57 ms or 3.14 us per coefficient. The filter
amplitude response is given in the graph below. The exponential filter segment appears as a straight line in the
dB amplitude response below.

Amp 501-Coefficient RealValued CLSLP [.1-.4] LPFIR Filter [EXP,ABS]

Response, dB

120 L (| -
ey | I
oo FOPOPY | . ML

Frequency, Normalized Hz
Figure 4.1: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [EXP,ABS].

FIR filter synthesis is performed via the C++ code fragment below. The AddSymmetric function is used for
real-valued filters [0-.5) and Add for complex-valued filters [0-1). AddSymmetric adds filter constraints that are
conjugate-symmetric in frequency so as to guarantee real-valued filter coefficients. These coefficients are then
written to the OutCoefs vector.

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h"”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 501;

CLSLP Filt;

vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.AddSymmetric(LS_FIR Filter::eLin_AbstErr, .0, .1, 0.00, 0.00, 1);
Filt.AddSymmetric(LS_FIR Filter::eExp_AbsErr, .1, .4, 1e-4, 1.00, 1);
Filt.AddSymmetric(LS _FIR Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenerateFilter(NumFiltCoefs, OutCoefs);

4.1.2. Exponential/Relative Weighted-Error Frequency Intervals

A linear-phase real-valued FIR filter with 501-coefficients is synthesized using the CLSLP algorithm. We are
testing the exponential/relative mode. This synthesis takes about 1.56 ms or 3.11 us per filter coefficient. The
filter’s amplitude response is given in Figure 4.2 below. The exponential filter interval appears as a sloped-line
in the dB amplitude response. The little response peak just below .1 Hz can be reduced by adding a small
triangular filter design section to reduce the abrupt amplitude transition. The filter response will improve as a
result.

Amp 501-Coefficient RealValued CLSLP [.1-.4] LPFIR Filter [EXP,REL]

Response, dB

-100 P
-)
vrnmwnwmm'lm““"

\ Z
l‘f”'”'ﬂlmnﬁwmmnvmh

0 0.1 0.2 0.3 0.4 0.5
Frequency, Normalized Hz

Figure 4.2: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [EXP,REL].

The code fragment below is the C++ main program used in this example.

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 501;

CLSLP Filt;

vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.AddSymmetric(LS_FIR Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1);
Filt.AddSymmetric(LS_FIR Filter::eExp_RelErr, .1, .4, 1e-4, 1.00, 1);
Filt.AddSymmetric(LS _FIR Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenerateFilter(NumFiltCoefs, OutCoefs);

4.1.3. Linear/Absolute Weighted-Error Filter Segments

A linear-phase real-valued FIR filter with 501-coefficients is synthesized using the CLSLP algorithm. We are
testing the Linear/Absolute mode. This 501-coefficient filter can be generated in 3.52 ms or 7.02 us per
coefficient. The linear slope appears as a logarithmic curve.

Amp: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [LIN,ABS]

Response, dB

R
MJ
=]

\m '
1140 | -
owwww Yo

Figure 4.3: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [LIN,ABS].

The code fragment below is the C++ main program used in this example.

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 501;
LS_FIR_Filter Filt;

vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.AddSymmetric(LS_FIR Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1);
Filt.AddSymmetric(LS_FIR Filter::eLin_AbsErr, .1, .4, 1e-4, 1.00, 1);
Filt.AddSymmetric(LS _FIR Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenerateFilter(NumFiltCoefs, OutCoefs);

4.1.4. Linear/Relative Weighted-Error Filter Segments

A linear-phase FIR (LPFIR) filter with 501-coefficients is synthesized using the CLSLP algorithm. We are
testing the linear/relative mode. The synthesis takes about 1.64 ms or 3.26 us per coefficient. The CLSLP
filter amplitude response is given in Figure 4.4 below. The linear filter segment appears as a logarithmic curve
in the amplitude response plot below. There is a small peak just below .1 Hz though we are close to making the
-80 dB response. Adding a small triangular filter design section to reduce the abrupt amplitude transition. The
filter response will improve substantially as a result. This 501-coefficient filter can be generated in 1.64 ms or

3.26 ps per coefficient. The linear slope appears as a logarithmic curve.

Amp: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [LIN,REL]

Response, dB

| _
:120 i WN | -
140 | I I
200 mnmmmlmmwmw , . . ’Wﬂ iy M

Figure 4.4: Amplitude: 501-Coefficient Real-Valued CLSLP [.1-.4] LPFIR Filter [LIN,REL].

The code fragment below is the C++ main program used in this example.

// The C++ code segment that generates this 501-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 501;
LS_FIR_Filter Filt;

vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.AddSymmetric(LS_FIR Filter::eLin_AbsErr, .0, .1, 0.00, 0.00, 1);
Filt.AddSymmetric(LS_FIR Filter::eLin_RelErr, .1, .4, 1e-4, 1.00, 1);
Filt.AddSymmetric(LS _FIR Filter::eLin_AbsErr, .4, .5, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenerateFilter(NumFiltCoefs, OutCoefs);

4.2. Complex-Coefficient Linear-Phase FIR (LPFIR) Filters

The filter response of a real-valued LPFIR filter possess conjugate-symmetry about 0 Hz. Therefore it suffices
to specify the the amplitude response only from 0 to .5 Normalized Hz and infer the rest from the symmetry.
FIR filters with complex-valued coefficients do not have conjugate symmetric filter coefficients. Therefore
plots of complex-coefficient FIR filters are usually plotted from -.5 to .5 Normalized Hz.

4.2.1. Example Filter 5

A linear-phase FIR filter with 1001 complex-valued coefficients is synthesized using the CLSLP algorithm. We
are testing the complex-coefficient mode so amplitude plots will be displayed from -.5 to .5 Normalized Hz.

10

// The C++ code segment that generates this 1001-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 1001;
LS_FIR_Filter Filt;

vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz

// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.Add(LS_FIR Filter::eLin Absterr, .0, .05, 0.00, 0.00, 1),
Filt.Add(LS_FIR Filter::eExp_AbstErr, .05, .2, 1e-4, 1.00, 1),
Filt.Add(LS_FIR Filter::eExp_AbsErr, .2, .5, 1le-4, 1.00, 1);
Filt.Add(LS_FIR Filter::eExp_Abskrr, .5, .9, 1.00, 1e-4, 1);
Filt.Add(LS _FIR Filter::eLin_AbsErr, .9, 1.0, 0.00, 0.00, 1);

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenerateFilter(NumFiltCoefs, OutCoefs);

This filter synthesis takes 5.54 ms or 5.54 us per coefficient on a standard PC. The resultant CLSLP filter’s
amplitude response is given in Figure 4.5 below.

Amp 1024-Coefficient Complex-Valued CLSLP [Dual-Band Bandpass] LPFIR Filter

—

Response, dB

-0.2 0
Frequency, Normalized Hz

Figure 4.5: Amplitude: Ex5 1001-Coefficient Complex-Value CLSLP LPFIR [EXP,ABS].

4.2.2. Example Filter 6

A linear-phase FIR filter with 2049 complex-valued coefficients is synthesized using the CLSLP algorithm. We
are testing the complex-coefficient mode so amplitude plots will be displayed from 0 to 1 Normalized Hz.

11

// The C++ code segment that generates this 1001-coefficient CLSLP filter
#include “CLSLP.h”

// Generate the CLSLP filter Coefficients into OutCoefs
const unsigned int NumFiltCoefs = 2049;
LS_FIR_Filter Filt;

vector<complex<double>> OutCoefs(NumFiltCoefs);

// ‘AddSymmetric’ is for Real-Valued Filter Coefficients ([0,.5] mod 1.) Normalized Hz
// ‘Add’ is for Complex-Valued Filter Coefficients ([0,1.) mod 1.) Normalized Hz
Filt.Add(CLSLP::eExp_AbstErr, -0.50, -0.20, 0.00, 0.00, 1.0);

Filt.Add(CLSLP::eExp_AbsErr, -0.20, -0.19, 1.00, 1.00, 1.0);

Filt.Add(CLSLP::eExp_AbsErr, -0.19, 0.10, 0.00, 0.00, 1.0),

Filt.Add(CLSLP::eExp_AbsErr, 0.10, 0.20, 1.00, 1.00, 1.0);

Filt.Add(CLSLP::eExp_AbstErr, 0.20, 0.40, 0.00, 0.00, 1.0);

Filt.Add(CLSLP::eExp_AbsErr, 0.40, 0.50, 0.00, 0.00, 1.0)

7

// Calculate the FIR Filter Coefficients into OutCoefs
Filt.GenerateFilter(NumFiltCoefs, OutCoefs);

This filter synthesis takes 22.38 ms or 10.92 us per coefficient on a standard PC. The resultant CLSLP filter’s
amplitude response is given in Figure 4.5 above.

Amp 2049-Coef CLSLP LPFIR Filter {in order): LinAbs, ExpAbs, LinRel, ExpRel
150 . . ; .
100 } 1
. K""
© 50 | |
g |
o
=]
@ 0 1
@
[ng
50]
-100 ' ' i i
0 0.2 0.4 0.6 0.8 1
Frequency, Normalized Hz

Figure 4.6: Amplitude: Ex6 2047-Coefficient Complex-Value CLSLP LPFIR [EXP,ABS].

This filter synthesis takes 23.39 ms or 11.43 us per coefficient on a standard PC. The resultant CLSLP filter’s
amplitude response is given in Figure 4.6 above.

5. Web Resources

See website http://www.wejc.com for CLSLP software information and downloads. Look for the acronym
CLSLP on the initial web page. The original Asilomar paper “Constrained Least-Squares Design and
Characterization of Affine Phase Complex FIR Filters”, reference [1], is included as PDF file, “Constrained Least-
Squares FIR Filter Synthesis.pdf” which is included in the normal CLSLP software distribution.

12

http://www.wejc.com/

The http:/www.wejc.com/ website has more information on other computer science, engineering, or
mathematical algorithms as well as free downloads. If you have interest in any joint-work or just want to write,
feel free to write at wejc@wejc.com. We are in Washington State, United States.

6. References

[11 A. G. Jaffer and W. E. Jones, "Constrained least-squares design and characterization of affine phase
complex FIR filters," Proceedings of 27th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, USA, 1993, pp. 685-691 vol.1, doi: 10.1109/ACSSC.1993.342607.

[2] A. G. Jaffer and W. E. Jones, "Weighted least-squares design and characterization of complex FIR
filters," in IEEE Transactions on Signal Processing, vol. 43, no. 10, pp. 2398-2401, Oct. 1995, doi:
10.1109/78.469851.

[31 A. G. Jaffer, W. E. Jones and T. J. Abatzoglou, "Weighted least-squares design of linear-phase and
arbitrary 2-D complex FIR filters,” 1995 International Conference on Acoustics, Speech, and Signal
Processing, Detroit, MI, USA, 1995, pp. 1256-1259 vol.2, doi: 10.1109/ICASSP.1995.480467.

13

mailto:wejc@wejc.com
http://www.wejc.com/

CLSLP LPFIR Filter Synthesis Errata

Support Files Follow

Requires a Recent GNU or Equivalent C++ Compiler

[C++20 Language Standard Source Code Used]

Contents

LS_FIR Filter.h

The C++ header file for the filter synthesis software.

LS_FIR_Filter.cpp

The C++ source file for the filter synthesis software.

CLEAN

A BASH script that clears the CMAKE build directory.

BUILD_AND_RUN

A BASH script that performs a CMAKE build then runs the

just-built program.

GENERATE_PLOTS

A BASH script that generates amplitude and phase plots,
PNG files, using GNUPLOT.

as

Start.cpp

The source code listing for the c++ main (where the program
begins).

AlignedMemAlloc.h

SSE and AVX C++ vector allocator for faster execution on
SIMD machines.

Constrained Least-
Squares Design and
Characterization of
Affine Phase
Complex FIR Filters

The Asilomar paper “Constrained Least-Squares Design and
Characterization of Affine Phase Complex FIR Filters” ref
[1]. Detail on the general theory behind CLSLP LPFIR
filters with all the requisite math. The C++ subroutines
used here for CLSLP, are coded directly from the definitions
in this document.

14

	1. Introduction
	2. Linear-Phase FIR (LPFIR) Filters
	3. Using the CLSLP Algorithm
	3.1. Filter Frequency-Interval Definitions
	3.1.1. Frequency-Interval Types
	3.1.2. Segment Parameters
	3.1.3. Segment Weights

	3.2. Using CLSLP Software
	3.3. Installation
	3.4. CLSLP Software Distribution
	3.4.1. CLSLP Software Distribution
	3.4.2. Building Application with CMAKE
	3.4.3. Spectral Plots

	3.5. CLSLP Filter Synthesis Applications
	3.6. Building Filter Synthesis Software

	4. FIR Filter Synthesis Examples
	4.1. Sloped-Bandpass Filter Example
	4.1.1. Exponential/Absolute Weighted-Error Filter Segments
	4.1.2. Exponential/Relative Weighted-Error Frequency Intervals
	4.1.3. Linear/Absolute Weighted-Error Filter Segments
	4.1.4. Linear/Relative Weighted-Error Filter Segments

	4.2. Complex-Coefficient Linear-Phase FIR (LPFIR) Filters
	4.2.1. Example Filter 5
	4.2.2. Example Filter 6

	5. Web Resources
	6. References

