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Abstract 

in many signal processing applications, the need 
arises for the design of complex coefficient finite impulse 
response (FIR) filters to meet the specijcations which 
cannot be approximated by real coefficient FIR jlters. 
This paper presents a new technique for the design of 
complex FIR filters based on minimizing a weighted 
integral squared-error criterion subject to the constraint 
that the resulting j l t er  response be affine phase (i.e., 
generalize linear phase). The technique makes use of the 
necessav and sufficient conditions for a causal complex 
FIR jilter to possess afline phase which are explicitly 
derived here. The method is non-iterative and 
computationally efficient. Several illustrative filter 
design examples are presented with excellent results. 

1. Introduction. 

The subject of the design of finite impulse 
response filters has a long history, as evidenced by a 
parhal list of publications [l]-[5]. For the most part, 
however, the previous publications have been concemed 
with the design of real coefficient FIR filters whose 
fiequency response functions H# necessarily satisfy 
~ ( f ) = ~ * ( - f ) ,  where * denotes complex conjugate. For a 
sigruficant class of sensor signal processing problems, 
however, the desired frequency response will not 
necessarily satisfy this condition, e.g. the design of 
asymmetric notch filters for clutter cancellation problems 
in airborne radar or moving-platform active sonar 
systems. These systems and, in general, systems where 
analyt~c signals are to be processed to yield filter 
responses not satisfying this condition, mandate the need 
for complex coefficient FIR filters. 

Although several authors have addressed the 
design of FIR filters by complex Chebyshev 
approximations [6]-[8], their works were restricted to real 
coefficient filters and their methods do not generalize 
readily to the complex coefficient case. Preuss [9] 
addressed the design of complex FIR filters using the 

Chebyshev norm and presented some interesting 
examples. However, his method involved a heuristic 
modification of the Remez exchange algorithm resulting 
in an iterative procedure that is not guaranteed to 
converge to the optimal solution. Weighted least-squares 
techniques [lo], [ l l ]  also seem to have been applied only 
to the real coefficient case and, unlike the methods of this 
paper, appear to require a dense fiequency sampling grid 
to model the desired amplitude response. 

This paper is concemed with the design of 
complex coefficient FIR filters to satisfy a specified 
multiband amplitude response, based on minimizing a 
weighted integral squarederror criterion subject to the 
constraint that the resulting filter response possesses 
aflne phase (i.e. linear phase with an offset). The 
incorporation of the affine phase constraint leads to good 
filter design and, moreover, is often a requirement in 
many system applications. The minimization is carried 
out subject to appropriate constraints on the filter 
coefficients (e.g. conjugate-symmetry constraints) needed 
to satisfy the a!Xne phase property. These constraints for 
complex FIR filters are explicitly derived here in general 
form. An important feature of the present work is the use 
of the piecewise linear or exponential models to spec@ 
the desired multiband amplitude response, leading to an 
efficient, closed-form evaluation of certain integrals 
required in the computation of the optimal filter 
coefficient vector. This avoids the need for solving a 
discretized problem using a dense fiequency sampling 
grid for the desired amplitude response, with the attendant 
problems in the transition bands. The filter design 
method requires on~y the solution of a set of N 
simultaneous linear equations (where N is the filter 
length) with a Hermitian-Toeplitz coefficient matrix, 
which can be obtained in only O(N*)  computations using 
the efficient Levinson or Trench algorithms [ 131. 

Some illustrative complex coefficient filter 
design examples are also presented, including the design 
of asymmetric notch filters required for clutter 
suppression, and bandpass differentiators, with excellent 
results in general and direct comparison to previously 
published results for the latter example. Further 
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examples, and the design of unconstrained complex FIR 
filters, canbefoundin [14]. 

2. Conditions for causal complex-valued FIR 
fdters to possess affine phase 

The conditions for real-valued causal FIR filters 
to possess linear phase, including linear phase with an 
offset, more appropriately termed afJine phase, are well 
known and have been derived in [4] and [5].  However, 
their methods do not directly extend to the complex 
c&€icient FIR filter case. It also appears that the 
necessary and sufficient conditions for complex FIR filters 
to be afthe phase (including strict Linear phase) do not 
appear to have been previously derived or stated, although 
special cases have been used in the literature [9]. The 
filter response for a causal N length FIR filter with 
complex coefficients h(O), h( l ) ,  . . . , h( N - 1 )  is given by 

n=O 
where, in (l), the sampling interval is taken as equal to 1 
second so that f represents normalized frequency. We 
deduce, in the following theorem, the necessary and 
s a c i e n t  conditions for ~ ( f )  to have an affine phase 
function 

for some a and p. The proof does not require separate 
treatments of even and odd length filters and is more 
general and precise than previous ones pertaining to the 
real filter case [ 5 ] .  In order to exclude filters with leading 
or trailing zero coefficients which effectively alter the 
length of the filter, we impose the conditions h(0) z 0, 

The main results of this Section are contained in 

< p ( f ) = - 2 g a + p  (2) 

h ( N -  1 )  # 0.  

the following theorem and its corollaries. 

Theorem: The jilter response of a causal 
complex coeflcient FIR filter, with coeficients 
h ( ~ ) ,  h ( l ) ,  . . . , A ( N  - 1 )  where h ( ~ )  # 0, h( N - 1 )  # 0, 
is afine phase of the form (2) if and only if 
h(n) = tJ2S h'(N - 1 - n),  
Furthermore, the delay term a is necessarily given by 
a = ( N - 1)/2 

n = o,.*., N - 1  

proof: We prove necessity, i.e. the "only if" part, 
first. The affine phase property implies that (1) can be 
rewritten in the form 

n=O I 

where the term inside the braces is purely real, i.e. equal 
to its conjugate. Hence, equating this term to its 
conjugate and letting z = eizd results in, explicitly, 

(4) h(0)z" + h( 1)za-I + . . . + h( N - l )Z=-N+' 

In (4), z and its powers constitute a set of complex 
exponential functions that are linearly independent [ 151. 
Hence (4) can only be satisfied for all values of z by 
equating the coefficients of like powers of z on both sides 
of (4). Since the powers of z on the left and right sides of 
(4) are, in descending order, {a, a - 1, . . . , a - N + 1 )  
and { N - 1 - a, N - 2 - a,. . . , - a} respectively and 
since h(O)#O, h ( N - I ) # O  by assumption, we must 
have that the highest and lowest powers in the former set 
fall within the range of the latter set, i.e., 

(5) 
(6) 

But then, it follows from ( 5 )  that 0 5 a I (N - 1)/2 
and from (6) that (N - 1)/2 I a I N - 1 ,  from which 
it follows that 

(7) 
precisely. Substituting (7) into (4), letting 
m = N - 1 -n on the right side of (4) and rearranging 
yields 

-a I a I N - 1 - a  
-a I a - N + 1  5 N - 1 - a  

a = (N - 1)/2 

n=O 1 
(8) 

Equating coefficients of same powers of z on both 
sides of (8) (because of linear independence of the 
complex exponentials of z and its powers) yields 

h(n) = eJ21 h * ( ~ -  1 -e), n = 0, ..., N- 1 (9) 
which, together with (7), proves the necessity part of the 
theorem. It is noted that setting p= o or *% in (9) 

yields the conjugate symmetric and anticonjugate 
symmetric filters respectively: 

(10) 

(11) 

h(n)=h*(N - 1-n), n = O,. . . ,N-  1 

h(n) = - h*(N - 1 - n),  n = 0,. . . ,N - 1 

Sufficiency: This follows immdately; for a 
proof see [14]. 

Corollary 1: If the filter coefficients are 
restricted to be real, it can be shown that the conditions 
(9) result in just two Merent constraints 

(12) h(n) = h(N - 1 -n), n = 0,. . . , N - 1 
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h ( n ) = - h ( N - 1 - n ) ,  n=o, ..., ~ - 1  (13) 
which d e h e  the symmetric and anti-symmetric filters 
respectwely, in agreement with [ 5 ] .  The proof is omitted 
here for lack of space but can be found in [ 141. 

Corollarv 2: We will show that it suflices for 
filter design applications to apply the theorem for /.?= 0 
and rotate the output phase by p. In (3), let 
ho(n) = e-jS h(n) where the h(n) satisfy the conditions 
of the theorem. For n = 0,. . . , N - 1 ,  we have 

(14) 

and 
(15) 

h( n )  = ej2p h* ( N - 1 - n) 

h,,(n) = e18 h * ( ~  - 1 -n) 

= h , . ( N - l - n )  
Hence ho(n) satisfies the conddons of the theorem for 
strict linear phase (with p= 0). Hence the filter response 
(3) can be written as 

where 
H(f) = e’j Ho(f) (16) 

J 
with a = ( N - 1 ) / 2 .  Ho(f), as given by (17), is the 
frequency response of a strict linear phase filter and hence 
(16) states that the frequency response of an arbitrary 
affine phase filter can be obtained by multiplying H,, (f ) 
by e’’, as was to be shown. 

3. Linear phase FIR filter design by 
constrained weighted least-squares method. 

We consider here the problem of designing 
complex coefficient FIR filters to approximate a specified 
complex valued frequency response by employing a 
weighted integral least-squares error criterion. Let 
zD ( f )  be the desired complex valued frequency response 
and W ( f )  be a real nonnegative piecewise continuous 
weighting function. z D ( f )  is of the form 

zD(f) = aD(f) e’*’(’) where u D ( f )  and O D ( f )  are 
the desired amplitude and phase responses respectively. 
Let b = [ h(01, h ( l ) ,  . . ., h ( ~  - 1 )  1‘ represent the 
complex coefficient FIR filter of length N .  H f l ,  as given 
by (1) can be written as 

(18) H ( f )  = 8 (f) h 

eiZ4N-‘)f  lr where d ( f ) = [  1,eJ2#, ..., 

and the superscripts T and H denote the transpose and 
conjugate transpose operators. We seek to obtain the 
coefficient vector h_ that minimizes the weighted integrd 
squared-error criterion 

subject to the constraint (1). It is noted that the criterion 
(19) allows for zD(f) being specified over compact 
subsets of the normalized frequency interval [0,1) and 
that W( f ) may equal zero over some of the subsets. In 
the design examples given in Section 5, W( f) is chosen 
so that criterion (19) becomes one of minimizing the 
relative integral squared error. This is discussed more 
fully in Section 4. 

The conjugate symmetry constraint (10) on the 
filter coefficients can be compactly represented as 

where E is the N x N exchange matrix with ones on the 
crossdagonal and zeros elsewhere. The exchange matrix 
has the properties that ET = E and E 2  = I (the identity 
matrix) so that E-’ = E. Note also that the formulation 
(20) applies to both even and odd length filters, so that 
separate treatments of these two cases are unnecessary. 

The cost function (19) is a real-valued, 
nonnegative function of the complex vector !I-. Its 
minimization may be accomplished by the use of a 
complex gradient operator and its associated matrix- 
vector calculus operations as described by Brandwood 
[ 131. Let 12 = b, + j by where hl and by are the real and 
imaginary components of the complex vector h. Define 
the complex gradient operator as 

Then a necessary and sufficient condition for a stationary 
point of J(h_) is that V,, J(b)  = g. Equation (19) can be 
written as 

h’=Eh_ (20) 

V , = 1 / 2 ( i Y a x - i q a y )  (21) 

Using the constraint equation h’ = E I! or, equivalently, 
hH =hT E,weget 

(23) 1 [ + b T E d ( f ) P ( l ) ! !  

IzLl(f)l2 -z;(f)dH(f)h 
J(b)= J;wlf> - b T W f ) z g ( f )  df 

Differentiating with respect to h_ (see [ 131 for details on 
applying the complex gradient operator to linear and 
quadratic forms), and equating to 0 yields 
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where R = E d( f ) d_"( f ). 
vields 

Rearrangement of (24) 

j;w(f) [%(.r)d_(f) + .;,(f)d*(f)]df 
Although (25) expresses the filter coefficient vector h_ as 
the solution of a set of simultaneous linear equations, it 
can be simplified further to yield a more compact and 
computationally efficient form. First note that since 
R = E d_(f )  &(f) and pre-multiplication of a matrix 
by E reverses its rows, we can readily show that R = RT. 
Now let 

(26) Q = ji W f  ) d ( f )  dH ( f ) d f  

L =  p(f ) [ E z , ( f ) d _ ( f ) + z ~ ( f ) d _ ' ( f  )]df (27) 
Then (25) reduces to 

The Hermitian matrix Q is also Toeplitz since its (m,n)th 

element, given by j dw( / )  e'2n(m-n)f df , depends only on 

the difference (m - n). Equation (28) represents a system 
of N simultaneous linear equations, with a Hermitian- 
Toeplitz coefficient matrix, for the solution of the filter 
coefficient vector h,. Additionally, since the 
Vandermonde type vectors d ( f )  are linearly independent 
for distinct values of f in the interval [ 0, I), the matrix Q 
will be of 111 rank N (and positivedefinite) as long as 
the range of the integration in (28) encompasses any 
interval or at least N discrete distinct points in the 
frequency domain where W ( f )  is not zero. This will be 
true for any non-trivial, well-posed filter design problem, 
resulting in a unique solution for h _ .  The matrix Q is 
completely specified by either its first row or column and 
the system of linear equations (28) can be efficiently 
solved in O ( N ~ )  operations by the Levinson recursion or 
Trench algorithm [12], resulting in a significant 
computational savings over general matrix inversion 
techniques which require O(iv3) operations. 

Note that h_,  as given by the solution of (28) 
actually satisfies the conjugate-symmetry constraint 
regardless of the specification of the desired phase 
response Q ) D (  f ), which need not be linear. However, 
since the constraint (20) would only be imposed for linear 
phase filter design problems, it would be appropriate for 
the desired phase response O D ( f )  to be specified as 
linear phase with a delay of ( N -  1)/2, i.e. as 

Q h = l / 2 E r  - (28) 

@ D ( f )  = - 2 @( N - 1)/2. 

The Q matrix and the r, vector, required in (28) 
are speciiied as follows: The first column of the 
Hermitian-Toeplitz matrix Q, which completely defines 
Q, is given by 

df m=1, ..., N (29) [Q],, = I , W ( f )  e J 2 n ( 4 /  

Using aD(f)  = - 2 #( N - 1)/2, the nth element of the 
L vector by (27) can be shown to be given by 

In the filter design examples presented in Section 5 the 
weighting function corresponds to the squared relative 
error. Furthermore, since most filter design problems, 
including the examples in Section 5, require 
approximating the frequency response over multiple 
subbands, which may be disjoint, the weighting function 
specializes to 

where M is the number of fiequency subbands of interest, 
a, ( f )  is the desired amplitude response over the kth 
subband and c k  are additional discrete weights included 
in (3 1) to permit emphasizing certain frequency segments 
over others. Under these assumptions, (29) and (30) 
reduce to 

(33) M -J2 d( n-( ' 4 4 2 )  

[[In =2 J:,2 e aDk( f>  df n = I . .  ... N 
k=l 

Two particular types of amplitude response functions 
a&), the linear amplitude and the linear log-amplitude 
or exponential response models, are employed in the 
examples of Section 5.  These result in the closed-form 
expressions for the integrals in (32) and (33) which are 
readily evaluated and also yield excellent performance as 
demonstrated in Section 5. 

4. Weighting and amplitude response models. 

In this section two specific amplitude response 
functions, the linear and exponential, used in conjunction 
with relative square-error weighting, are used as models 
for the linear phase complex FIR filter design technique, 
the constrained technique, defined in Section 4. The 
linear model is defined by 

(34) a D k ( f >  = ak + P k  f 

and ak = A,, - <,P, 
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and the exponential model by 
a, (f ) = e r k  + st f 

-2Yk e 
[ Q k ] , ,  = ck e 2 ( l n ( " J - 1 ) - 6 k )  

(35) 

m = I ,  .... N 

(43) 

- f ( J Z d n - ( N - 1 ) / 2 ) + 6 & )  e 
= - 2ck e-" ( j 2 d n - ( N - 1 ) / 2 ) + 6 k )  

.- . 
for the kth frequency segment. 

The exponential model implies that the log- 
amplitude is linear over the frequency segment whch is 
particularly suitable for many applications. The 
emnentiai model is ais0 computatiodiy more efficient 

where E i ( x )  is the exponential integral as defined in 
Gradshteyn and Ryzhik [16] and Abramowitz and Stegun 
[17]. It can be easily evaluated in terms of the sine and 
cosine integrals si(') and c~(x) related by 

f =FkZ (39) 

n =  1 .  .... N 

the expressions 

The general result of evaluating (40) and (41) is given by 

5. Illustrative filter design examples. 

This section examines two applications of the 
constrained algorithm, the asymmetric v-notch filter and 
the bandpass differentiator examined by Preuss [9]. The 
examples in thls section employ the amplitude response 
models of Section 4 used in conjunction with relative 
squareerror weighting. 

The filter design examples in this Section were 
generated using a MATLAB program based on the results 
of Sections 3 and 4. By exploiting the Toeplitz structure 
of matrix Q in as defined in Section 3, the Levinson or 
Trench algorithms [12] can be employed to reduce the 
computational complexity of the solution from an o ( n 3 )  

solution to an O ( n 2 )  solution. Using these techniques the 
10 1 -tap V-Notch filter design problem below was 
generated in 3.35 seconds in MATLAB on an 486DX 
JBM-PC clone running at 50 MHz. 

The Asymmetric V-Notch Filter Design 
Problem: The asymmetric V-Notch filter examined here 
is defined by the speciftcation 

0 dB, O ~ f 4  (45) 

0 dB, .8Sf 4.0 
where the quantities in brackets in (45) are the end-points 
of the exponential amplitude response function over the 
frequency interval specified ( [ A k l . A p 2 ]  for the kth 
frequency interval in (34)). The asymmetry in the desired 
amplitude response can arise in moving platform radar or 
active sonar systems where the unwanted clutter returns 
exhibit Doppler shifts that are largely "down-Doppler" 
relative to the Doppler frequency of the moving platform. 
Due to this asymmetry, the filter cannot be synthesized by 
conventional real FIR filter design techniques as the 
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uxflicients can never be represented as a purely real 
sequence. For this example, each frequency subband is 
equally weighted in the sense that the ck parameter 
defined in (31) is equal to I for each segment. Equations 
(28), (38) and (39) are used to evaluate the filter 
coefticients as functions of the parameters specified in the 
design specification. 

Figure 1 illustrates a sample asymmetric v-notch 
filter generated with 101 coefficients. The filter 
coefticients are indeed conjugate-symmetric as expected 
from the arguments made in Section 2. The relative error 
of the filter synthesis 

is plotted in Figure 2. The RMS error used here is 
defined bv 

The 101-tap linear phase V-notch filter acheves 
maximum relative error of about 0.47 dl3 and an rms error 
of .004759. 

I 1 I J 
0.e 0.- 0.0 0.0 1 

rv-9Y-”DI. HI 

Figure 1. 101-Tap Asymmetric V-Notch Filter Amplitude 
Response. 

0.. I I I I 
I I l l  I 

e -.= 
c 
4 
- 0  

-0.0 

Figure 2. 101-Tap Asymmetric V-Notch Filter Error. 

The Bandpass Differentiator: In this Section 
the linear phase bandpass differentiator filter specified by 
Preuss [9] is generated using the constrained technique as 
described in Sections 3 and 4. In Preuss’ paper this filter 
is specified as 

(48) 

Note that this filter contains an affine phase offset 
produced by thej constant in (48). By the argument given 
in Section 2, it suffices to ignore this affine phase offset 
for the purposes of generating a linear phase filter and 
later multiply the complex FIR filter coefficients by thisj 
term which forms the final filter. This post-multiplication 
doesn’t change the filter‘s amplitude response. 

The realization of the bandpass differentiator as 
specified in (48) using the constrained algorithm is given 

Hd(f) { ~ 2 $  
sf 0 03750 5 f 5 042500 

0 a57500 i J 5 0.96250 

bY 
[.0710,.8700] ck = 2 x lo6, ,0355 5 f <.4350 

.43505f 4 6 5 0  
[.0009,.0009] Ck = 1, S650 r; f +. 9625 

lH,( f 1 = [.8700,.0009] ck = 100, i 
where the quantities in brackets are the end-points of the 
linear amplitude response h a i o n  over the frequency 
interval specified ([.+I&] for the kth frequency interval 
in (35)). The quantities ck are the auxiliafy weights 
applied to the subbands as defined in (31). This 
realization was found to yield satisfactory fit errors in the 
passband while preserving acceptable stop-band rejection. 
It is also desirable to weight the stop-band to a lesser 
degree than the passband to prevent an inordinate amount 
of effort being employed in flattening the stop-band. The 
results of our realization of the bandpass differentiator can 
be seen in Figure 3. 

The filter design fit error used in this example is 
specified by 
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Preuss obtained a relative peak amplitude error of 
+z x lo4 over the frequency interval [.0375,.4250]. 
The results of the application of the constrained algorithm 
are given in Figures 3 and 4. Note that the constrained 
algorithm achieves a smaller relative error over most of 
the passband (rms value of 1.084 x lo4), although the 
peak relative error is greater at  about -4.3 x lo4. This 
result is consistent with the nature of the weighted 
integral squared error and the Chebyshev criteria. 

Fig 3. 32-Tap Bandpass Differentiator Amplitude Response. 

Fig 4. 32-Tap Bandpass Differentiator Filter Fit Error. 
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